Representational dynamics of object vision: The first 1000 ms

脑磁图 对象(语法) 刺激(心理学) 心理学 范畴变量 可视对象 认知心理学 颞叶皮质 视觉对象识别的认知神经科学 人工智能 大脑活动与冥想 沟通 模式识别(心理学) 计算机科学 感知 神经科学 脑电图 机器学习
作者
Thomas A. Carlson,David A. Tovar,Arjen Alink,Nikolaus Kriegeskorte
出处
期刊:Journal of Vision [Association for Research in Vision and Ophthalmology (ARVO)]
卷期号:13 (10): 1-1 被引量:303
标识
DOI:10.1167/13.10.1
摘要

Human object recognition is remarkably efficient. In recent years, significant advancements have been made in our understanding of how the brain represents visual objects and organizes them into categories. Recent studies using pattern analyses methods have characterized a representational space of objects in human and primate inferior temporal cortex in which object exemplars are discriminable and cluster according to category (e.g., faces and bodies). In the present study we examined how category structure in object representations emerges in the first 1000 ms of visual processing. In the study, participants viewed 24 object exemplars with a planned categorical structure comprised of four levels ranging from highly specific (individual exemplars) to highly abstract (animate vs. inanimate), while their brain activity was recorded with magnetoencephalography (MEG). We used a sliding time window decoding approach to decode the exemplar and the exemplar's category that participants were viewing on a moment-to-moment basis. We found exemplar and category membership could be decoded from the neuromagnetic recordings shortly after stimulus onset (<100 ms) with peak decodability following thereafter. Latencies for peak decodability varied systematically with the level of category abstraction with more abstract categories emerging later, indicating that the brain hierarchically constructs category representations. In addition, we examined the stationarity of patterns of activity in the brain that encode object category information and show these patterns vary over time, suggesting the brain might use flexible time varying codes to represent visual object categories.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
hhhooo完成签到,获得积分10
刚刚
朴艺晨完成签到 ,获得积分10
刚刚
Vicky发布了新的文献求助10
1秒前
赘婿应助guan采纳,获得30
1秒前
Yv发布了新的文献求助10
2秒前
量子星尘发布了新的文献求助10
2秒前
panzhongjie发布了新的文献求助10
2秒前
共享精神应助jason采纳,获得10
3秒前
longlong完成签到,获得积分10
3秒前
4秒前
left_right完成签到,获得积分10
4秒前
5秒前
执着的麦片完成签到,获得积分10
7秒前
7秒前
云不归完成签到,获得积分10
8秒前
8秒前
8秒前
9秒前
9秒前
10秒前
junxu发布了新的文献求助10
11秒前
some发布了新的文献求助10
11秒前
13秒前
坚果发布了新的文献求助10
13秒前
风趣冬瓜发布了新的文献求助10
14秒前
羊羊发布了新的文献求助10
14秒前
17秒前
田様应助大力山槐采纳,获得10
18秒前
桐桐应助科研通管家采纳,获得10
18秒前
18秒前
花卷应助科研通管家采纳,获得20
18秒前
NexusExplorer应助科研通管家采纳,获得10
18秒前
彭于彦祖应助科研通管家采纳,获得30
18秒前
Owen应助科研通管家采纳,获得10
18秒前
科研通AI6应助科研通管家采纳,获得10
19秒前
赘婿应助科研通管家采纳,获得10
19秒前
田様应助科研通管家采纳,获得10
19秒前
qqrtqr应助科研通管家采纳,获得10
19秒前
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Mechanics of Solids with Applications to Thin Bodies 5000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5601572
求助须知:如何正确求助?哪些是违规求助? 4687052
关于积分的说明 14847258
捐赠科研通 4681425
什么是DOI,文献DOI怎么找? 2539420
邀请新用户注册赠送积分活动 1506336
关于科研通互助平台的介绍 1471297