亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Representational dynamics of object vision: The first 1000 ms

脑磁图 对象(语法) 刺激(心理学) 心理学 范畴变量 可视对象 认知心理学 颞叶皮质 视觉对象识别的认知神经科学 人工智能 大脑活动与冥想 沟通 模式识别(心理学) 计算机科学 感知 神经科学 脑电图 机器学习
作者
Thomas A. Carlson,David A. Tovar,Arjen Alink,Nikolaus Kriegeskorte
出处
期刊:Journal of Vision [Association for Research in Vision and Ophthalmology (ARVO)]
卷期号:13 (10): 1-1 被引量:303
标识
DOI:10.1167/13.10.1
摘要

Human object recognition is remarkably efficient. In recent years, significant advancements have been made in our understanding of how the brain represents visual objects and organizes them into categories. Recent studies using pattern analyses methods have characterized a representational space of objects in human and primate inferior temporal cortex in which object exemplars are discriminable and cluster according to category (e.g., faces and bodies). In the present study we examined how category structure in object representations emerges in the first 1000 ms of visual processing. In the study, participants viewed 24 object exemplars with a planned categorical structure comprised of four levels ranging from highly specific (individual exemplars) to highly abstract (animate vs. inanimate), while their brain activity was recorded with magnetoencephalography (MEG). We used a sliding time window decoding approach to decode the exemplar and the exemplar's category that participants were viewing on a moment-to-moment basis. We found exemplar and category membership could be decoded from the neuromagnetic recordings shortly after stimulus onset (<100 ms) with peak decodability following thereafter. Latencies for peak decodability varied systematically with the level of category abstraction with more abstract categories emerging later, indicating that the brain hierarchically constructs category representations. In addition, we examined the stationarity of patterns of activity in the brain that encode object category information and show these patterns vary over time, suggesting the brain might use flexible time varying codes to represent visual object categories.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
酷波er应助任性凤凰采纳,获得10
2秒前
以菱完成签到 ,获得积分10
3秒前
5秒前
Moo5_zzZ发布了新的文献求助30
9秒前
PKL完成签到,获得积分10
16秒前
18秒前
18秒前
CipherSage应助Moo5_zzZ采纳,获得30
21秒前
李健完成签到,获得积分10
23秒前
23秒前
汉堡包应助凉凉采纳,获得10
25秒前
shhoing应助科研通管家采纳,获得10
26秒前
我是老大应助科研通管家采纳,获得10
26秒前
科研通AI2S应助科研通管家采纳,获得10
26秒前
shhoing应助科研通管家采纳,获得10
26秒前
BowieHuang应助科研通管家采纳,获得10
26秒前
汉堡包应助科研通管家采纳,获得10
26秒前
26秒前
29秒前
31秒前
sparkle完成签到,获得积分10
32秒前
七慕凉应助Emma采纳,获得10
37秒前
43秒前
44秒前
49秒前
49秒前
51秒前
NexusExplorer应助Emma采纳,获得10
52秒前
曾经凌萱发布了新的文献求助10
53秒前
我要看文献完成签到 ,获得积分10
54秒前
55秒前
56秒前
槐序深巷完成签到 ,获得积分10
56秒前
小宋爱科研完成签到 ,获得积分10
58秒前
59秒前
浮游应助Emma采纳,获得10
1分钟前
xin发布了新的文献求助20
1分钟前
1分钟前
1分钟前
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Scope of Slavic Aspect 600
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5543029
求助须知:如何正确求助?哪些是违规求助? 4629142
关于积分的说明 14610941
捐赠科研通 4570445
什么是DOI,文献DOI怎么找? 2505771
邀请新用户注册赠送积分活动 1483063
关于科研通互助平台的介绍 1454364