EndoNet: A Deep Architecture for Recognition Tasks on Laparoscopic Videos

计算机科学 卷积神经网络 工作流程 人工智能 搜索引擎索引 任务(项目管理) 可视化 背景(考古学) 特征提取 腹腔镜胆囊切除术 任务分析 深度学习 过程(计算) 模式识别(心理学) 计算机视觉 机器学习 操作系统 古生物学 生物 经济 数据库 管理 医学 普通外科
作者
Andru Putra Twinanda,Sherif Shehata,Didier Mutter,Jacques Marescaux,Michel de Mathelin,Nicolas Padoy
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:36 (1): 86-97 被引量:811
标识
DOI:10.1109/tmi.2016.2593957
摘要

Surgical workflow recognition has numerous potential medical applications, such as the automatic indexing of surgical video databases and the optimization of real-time operating room scheduling, among others. As a result, surgical phase recognition has been studied in the context of several kinds of surgeries, such as cataract, neurological, and laparoscopic surgeries. In the literature, two types of features are typically used to perform this task: visual features and tool usage signals. However, the used visual features are mostly handcrafted. Furthermore, the tool usage signals are usually collected via a manual annotation process or by using additional equipment. In this paper, we propose a novel method for phase recognition that uses a convolutional neural network (CNN) to automatically learn features from cholecystectomy videos and that relies uniquely on visual information. In previous studies, it has been shown that the tool usage signals can provide valuable information in performing the phase recognition task. Thus, we present a novel CNN architecture, called EndoNet, that is designed to carry out the phase recognition and tool presence detection tasks in a multi-task manner. To the best of our knowledge, this is the first work proposing to use a CNN for multiple recognition tasks on laparoscopic videos. Experimental comparisons to other methods show that EndoNet yields state-of-the-art results for both tasks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI5应助木木采纳,获得10
1秒前
赘婿应助某博采纳,获得10
1秒前
3秒前
nino完成签到,获得积分0
3秒前
4秒前
一斤不是一吨完成签到,获得积分10
5秒前
彭于晏应助wang5945采纳,获得10
6秒前
necos发布了新的文献求助10
6秒前
丽丽完成签到,获得积分10
6秒前
务实的孤菱完成签到,获得积分10
7秒前
7秒前
小豆芽完成签到,获得积分10
7秒前
8秒前
山芙完成签到,获得积分10
8秒前
9秒前
万能图书馆应助羲月采纳,获得10
10秒前
10秒前
10秒前
11秒前
苏尔发布了新的文献求助10
11秒前
张叉叉发布了新的文献求助10
11秒前
慕青应助小台采纳,获得10
11秒前
12秒前
obaica发布了新的文献求助10
13秒前
千帆发布了新的文献求助10
14秒前
15秒前
16秒前
yaya应助俭朴的发带采纳,获得10
16秒前
16秒前
aaa发布了新的文献求助10
16秒前
16秒前
necos完成签到,获得积分10
17秒前
17秒前
18秒前
nenoaowu发布了新的文献求助10
18秒前
orange发布了新的文献求助10
18秒前
完美世界应助学不动了采纳,获得10
18秒前
可爱多885发布了新的文献求助10
18秒前
19秒前
Rita发布了新的文献求助10
21秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Production Logging: Theoretical and Interpretive Elements 3000
J'AI COMBATTU POUR MAO // ANNA WANG 660
Izeltabart tapatansine - AdisInsight 600
Introduction to Comparative Public Administration Administrative Systems and Reforms in Europe, Third Edition 3rd edition 500
Geotechnical characterization of slope movements 500
Individualized positive end-expiratory pressure in laparoscopic surgery: a randomized controlled trial 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3753151
求助须知:如何正确求助?哪些是违规求助? 3296761
关于积分的说明 10095584
捐赠科研通 3011483
什么是DOI,文献DOI怎么找? 1653854
邀请新用户注册赠送积分活动 788546
科研通“疑难数据库(出版商)”最低求助积分说明 752876