EndoNet: A Deep Architecture for Recognition Tasks on Laparoscopic Videos

计算机科学 卷积神经网络 工作流程 人工智能 搜索引擎索引 任务(项目管理) 可视化 背景(考古学) 特征提取 腹腔镜胆囊切除术 任务分析 深度学习 过程(计算) 模式识别(心理学) 计算机视觉 机器学习 操作系统 古生物学 生物 经济 数据库 管理 医学 普通外科
作者
Andru Putra Twinanda,Sherif Shehata,Didier Mutter,Jacques Marescaux,Michel de Mathelin,Nicolas Padoy
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:36 (1): 86-97 被引量:811
标识
DOI:10.1109/tmi.2016.2593957
摘要

Surgical workflow recognition has numerous potential medical applications, such as the automatic indexing of surgical video databases and the optimization of real-time operating room scheduling, among others. As a result, surgical phase recognition has been studied in the context of several kinds of surgeries, such as cataract, neurological, and laparoscopic surgeries. In the literature, two types of features are typically used to perform this task: visual features and tool usage signals. However, the used visual features are mostly handcrafted. Furthermore, the tool usage signals are usually collected via a manual annotation process or by using additional equipment. In this paper, we propose a novel method for phase recognition that uses a convolutional neural network (CNN) to automatically learn features from cholecystectomy videos and that relies uniquely on visual information. In previous studies, it has been shown that the tool usage signals can provide valuable information in performing the phase recognition task. Thus, we present a novel CNN architecture, called EndoNet, that is designed to carry out the phase recognition and tool presence detection tasks in a multi-task manner. To the best of our knowledge, this is the first work proposing to use a CNN for multiple recognition tasks on laparoscopic videos. Experimental comparisons to other methods show that EndoNet yields state-of-the-art results for both tasks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
1秒前
2秒前
小盘子完成签到,获得积分10
3秒前
李繁蕊完成签到,获得积分10
3秒前
3秒前
酷波er应助mashichuang采纳,获得10
3秒前
color发布了新的文献求助10
4秒前
4秒前
Helio发布了新的文献求助10
4秒前
4秒前
顺心若魔发布了新的文献求助10
5秒前
6秒前
CLN完成签到,获得积分10
7秒前
小王姐姐完成签到,获得积分10
7秒前
harri发布了新的文献求助30
7秒前
森敷完成签到 ,获得积分10
8秒前
缥缈的寻琴应助Atlantic采纳,获得10
9秒前
9秒前
9秒前
Gary完成签到,获得积分10
10秒前
12秒前
初芷伊完成签到,获得积分10
13秒前
13秒前
14秒前
火星上青筠完成签到,获得积分10
14秒前
15秒前
勤奋的下水道工人完成签到,获得积分10
15秒前
samtol完成签到,获得积分10
15秒前
16秒前
机智念芹发布了新的文献求助10
16秒前
16秒前
17秒前
wanci应助慕容迎松采纳,获得10
18秒前
18秒前
ccx完成签到,获得积分10
18秒前
harri完成签到,获得积分10
19秒前
思源应助777采纳,获得10
19秒前
CodeCraft应助刚睡醒采纳,获得10
19秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Problems of point-blast theory 400
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Novel Preparation of Chitin Nanocrystals by H2SO4 and H3PO4 Hydrolysis Followed by High-Pressure Water Jet Treatments 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3998074
求助须知:如何正确求助?哪些是违规求助? 3537636
关于积分的说明 11272063
捐赠科研通 3276726
什么是DOI,文献DOI怎么找? 1807114
邀请新用户注册赠送积分活动 883710
科研通“疑难数据库(出版商)”最低求助积分说明 810007