EndoNet: A Deep Architecture for Recognition Tasks on Laparoscopic Videos

计算机科学 卷积神经网络 工作流程 人工智能 搜索引擎索引 任务(项目管理) 可视化 背景(考古学) 特征提取 腹腔镜胆囊切除术 任务分析 深度学习 过程(计算) 模式识别(心理学) 计算机视觉 机器学习 操作系统 古生物学 生物 经济 数据库 管理 医学 普通外科
作者
Andru Putra Twinanda,Sherif Shehata,Didier Mutter,Jacques Marescaux,Michel de Mathelin,Nicolas Padoy
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:36 (1): 86-97 被引量:811
标识
DOI:10.1109/tmi.2016.2593957
摘要

Surgical workflow recognition has numerous potential medical applications, such as the automatic indexing of surgical video databases and the optimization of real-time operating room scheduling, among others. As a result, surgical phase recognition has been studied in the context of several kinds of surgeries, such as cataract, neurological, and laparoscopic surgeries. In the literature, two types of features are typically used to perform this task: visual features and tool usage signals. However, the used visual features are mostly handcrafted. Furthermore, the tool usage signals are usually collected via a manual annotation process or by using additional equipment. In this paper, we propose a novel method for phase recognition that uses a convolutional neural network (CNN) to automatically learn features from cholecystectomy videos and that relies uniquely on visual information. In previous studies, it has been shown that the tool usage signals can provide valuable information in performing the phase recognition task. Thus, we present a novel CNN architecture, called EndoNet, that is designed to carry out the phase recognition and tool presence detection tasks in a multi-task manner. To the best of our knowledge, this is the first work proposing to use a CNN for multiple recognition tasks on laparoscopic videos. Experimental comparisons to other methods show that EndoNet yields state-of-the-art results for both tasks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
槿荣完成签到,获得积分10
刚刚
刚刚
动听千风发布了新的文献求助10
1秒前
momo完成签到,获得积分10
1秒前
小龙虾完成签到,获得积分10
1秒前
科研通AI6应助tinghai86采纳,获得10
1秒前
段段发布了新的文献求助10
2秒前
2秒前
2秒前
tuyfytjt完成签到,获得积分20
2秒前
liu完成签到,获得积分20
2秒前
2秒前
lyy发布了新的文献求助10
2秒前
星夜吹笛牛上完成签到,获得积分10
2秒前
滑腻腻的小鱼完成签到,获得积分10
3秒前
DijiaXu应助畅快焦采纳,获得10
3秒前
3秒前
xxx发布了新的文献求助10
4秒前
Sheart发布了新的文献求助10
5秒前
非哲发布了新的文献求助10
5秒前
翁怜晴发布了新的文献求助10
6秒前
yuan完成签到,获得积分10
6秒前
ldy发布了新的文献求助10
6秒前
田様应助Auh采纳,获得10
6秒前
7秒前
7秒前
搜集达人应助JABBA采纳,获得10
7秒前
宁宁完成签到,获得积分10
7秒前
bkagyin应助qwe采纳,获得10
7秒前
liu发布了新的文献求助10
7秒前
XiaoLiu应助Lee采纳,获得10
8秒前
8秒前
ydx发布了新的文献求助10
9秒前
9秒前
Akim应助yu采纳,获得10
9秒前
9秒前
10秒前
呆萌的傲旋关注了科研通微信公众号
10秒前
10秒前
小蘑菇应助点点采纳,获得10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Founding Fathers The Shaping of America 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 460
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4576354
求助须知:如何正确求助?哪些是违规求助? 3995613
关于积分的说明 12369373
捐赠科研通 3669547
什么是DOI,文献DOI怎么找? 2022294
邀请新用户注册赠送积分活动 1056342
科研通“疑难数据库(出版商)”最低求助积分说明 943562