EndoNet: A Deep Architecture for Recognition Tasks on Laparoscopic Videos

计算机科学 卷积神经网络 工作流程 人工智能 搜索引擎索引 任务(项目管理) 可视化 背景(考古学) 特征提取 腹腔镜胆囊切除术 任务分析 深度学习 过程(计算) 模式识别(心理学) 计算机视觉 机器学习 操作系统 古生物学 生物 经济 数据库 管理 医学 普通外科
作者
Andru Putra Twinanda,Sherif Shehata,Didier Mutter,Jacques Marescaux,Michel de Mathelin,Nicolas Padoy
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:36 (1): 86-97 被引量:931
标识
DOI:10.1109/tmi.2016.2593957
摘要

Surgical workflow recognition has numerous potential medical applications, such as the automatic indexing of surgical video databases and the optimization of real-time operating room scheduling, among others. As a result, surgical phase recognition has been studied in the context of several kinds of surgeries, such as cataract, neurological, and laparoscopic surgeries. In the literature, two types of features are typically used to perform this task: visual features and tool usage signals. However, the used visual features are mostly handcrafted. Furthermore, the tool usage signals are usually collected via a manual annotation process or by using additional equipment. In this paper, we propose a novel method for phase recognition that uses a convolutional neural network (CNN) to automatically learn features from cholecystectomy videos and that relies uniquely on visual information. In previous studies, it has been shown that the tool usage signals can provide valuable information in performing the phase recognition task. Thus, we present a novel CNN architecture, called EndoNet, that is designed to carry out the phase recognition and tool presence detection tasks in a multi-task manner. To the best of our knowledge, this is the first work proposing to use a CNN for multiple recognition tasks on laparoscopic videos. Experimental comparisons to other methods show that EndoNet yields state-of-the-art results for both tasks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ding关注了科研通微信公众号
1秒前
书记发布了新的文献求助10
2秒前
852应助绿灯请通行采纳,获得10
2秒前
酷波er应助HDrinnk采纳,获得10
2秒前
2秒前
3秒前
Serena完成签到,获得积分10
3秒前
3秒前
九九发布了新的文献求助10
3秒前
4秒前
李李发布了新的文献求助10
4秒前
5秒前
gzhatsb完成签到,获得积分10
5秒前
共享精神应助霸气的思柔采纳,获得10
5秒前
6秒前
hh应助科研采纳,获得10
6秒前
CoNiCoNi完成签到,获得积分20
7秒前
cccui完成签到,获得积分10
7秒前
火星上凡霜完成签到,获得积分10
8秒前
8秒前
DrW1111发布了新的文献求助10
8秒前
JamesPei应助书记采纳,获得10
8秒前
huahua完成签到 ,获得积分10
9秒前
9秒前
Stevenchow发布了新的文献求助10
11秒前
yiqi发布了新的文献求助10
11秒前
Goyounjung完成签到,获得积分10
12秒前
浮游应助mimi采纳,获得10
13秒前
13秒前
王震发布了新的文献求助10
13秒前
14秒前
轻松戎发布了新的文献求助10
14秒前
ding发布了新的文献求助10
14秒前
pipik完成签到,获得积分10
15秒前
15秒前
量子星尘发布了新的文献求助10
15秒前
AMMMMM完成签到,获得积分10
16秒前
16秒前
17秒前
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
Active-site design in Cu-SSZ-13 curbs toxic hydrogen cyanide emissions 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5462518
求助须知:如何正确求助?哪些是违规求助? 4567225
关于积分的说明 14309649
捐赠科研通 4493103
什么是DOI,文献DOI怎么找? 2461427
邀请新用户注册赠送积分活动 1450522
关于科研通互助平台的介绍 1425854