SMILES Pair Encoding: A Data-Driven Substructure Tokenization Algorithm for Deep Learning

下部结构 编码(内存) 词汇分析 计算机科学 人工智能 算法 理论计算机科学 工程类 结构工程
作者
Xinhao Li,Denis Fourches
出处
期刊:Journal of Chemical Information and Modeling [American Chemical Society]
卷期号:61 (4): 1560-1569 被引量:82
标识
DOI:10.1021/acs.jcim.0c01127
摘要

Simplified molecular input line entry system (SMILES)-based deep learning models are slowly emerging as an important research topic in cheminformatics. In this study, we introduce SMILES pair encoding (SPE), a data-driven tokenization algorithm. SPE first learns a vocabulary of high-frequency SMILES substrings from a large chemical dataset (e.g., ChEMBL) and then tokenizes SMILES based on the learned vocabulary for the actual training of deep learning models. SPE augments the widely used atom-level tokenization by adding human-readable and chemically explainable SMILES substrings as tokens. Case studies show that SPE can achieve superior performances on both molecular generation and quantitative structure–activity relationship (QSAR) prediction tasks. In particular, the SPE-based generative models outperformed the atom-level tokenization model in the aspects of novelty, diversity, and ability to resemble the training set distribution. The performance of SPE-based QSAR prediction models were evaluated using 24 benchmark datasets where SPE consistently either did match or outperform atom-level and k-mer tokenization. Therefore, SPE could be a promising tokenization method for SMILES-based deep learning models. An open-source Python package SmilesPE was developed to implement this algorithm and is now freely available at https://github.com/XinhaoLi74/SmilesPE.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
奇怪的茶叶菌完成签到,获得积分10
刚刚
刚刚
CodeCraft应助科研通管家采纳,获得10
刚刚
刚刚
小二郎应助科研通管家采纳,获得10
刚刚
共享精神应助科研通管家采纳,获得10
刚刚
刚刚
刚刚
Owen应助科研通管家采纳,获得10
刚刚
浮游应助科研通管家采纳,获得10
1秒前
orixero应助科研通管家采纳,获得10
1秒前
李爱国应助科研通管家采纳,获得10
1秒前
科研通AI6应助科研通管家采纳,获得10
1秒前
天天快乐应助科研通管家采纳,获得10
1秒前
Jasper应助科研通管家采纳,获得10
1秒前
小二郎应助科研通管家采纳,获得10
1秒前
FashionBoy应助科研通管家采纳,获得10
2秒前
Dali应助科研通管家采纳,获得10
2秒前
2秒前
Owen应助科研通管家采纳,获得10
2秒前
领导范儿应助科研通管家采纳,获得10
2秒前
浮游应助科研通管家采纳,获得10
2秒前
社会主义接班人完成签到 ,获得积分10
2秒前
ilihe应助科研通管家采纳,获得10
2秒前
Stella应助科研通管家采纳,获得10
2秒前
CodeCraft应助科研通管家采纳,获得10
2秒前
2秒前
zhonglv7应助科研通管家采纳,获得10
2秒前
科研通AI6应助科研通管家采纳,获得10
2秒前
GUKGO发布了新的文献求助10
2秒前
科研通AI6应助科研通管家采纳,获得10
2秒前
SYX发布了新的文献求助10
2秒前
赘婿应助科研通管家采纳,获得10
2秒前
上官若男应助科研通管家采纳,获得10
2秒前
3秒前
zik应助科研通管家采纳,获得10
3秒前
科研通AI6应助科研通管家采纳,获得10
3秒前
浮游应助科研通管家采纳,获得10
3秒前
高分求助中
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 720
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5587388
求助须知:如何正确求助?哪些是违规求助? 4670503
关于积分的说明 14783142
捐赠科研通 4622601
什么是DOI,文献DOI怎么找? 2531265
邀请新用户注册赠送积分活动 1499954
关于科研通互助平台的介绍 1468066