相图
反铁磁性
之字形的
凝聚态物理
蒙特卡罗方法
铁磁性
哈密顿量(控制论)
磁化率
物理
伊辛模型
各向同性
而量子蒙特卡罗
相变
海森堡模型
统计物理学
相(物质)
量子力学
几何学
统计
数学优化
数学
作者
Mengjie Sun,Huihang Lin,Zheng Zhang,Yanzhen Cai,Wei Ren,Jing Kang,Jianting Ji,Feng Jin,Xiaoqun Wang,Rong Yu,Qingming Zhang,Zheng-Xin Liu
出处
期刊:Chinese Physics B
[IOP Publishing]
日期:2021-06-11
卷期号:30 (8): 087503-087503
被引量:4
标识
DOI:10.1088/1674-1056/ac0a5d
摘要
Recently, the family of rare-earth chalcohalides were proposed as candidate compounds to realize the Kitaev spin liquid (KSL) [ Chin. Phys. Lett. 38 047502 (2021)]. In the present work, we firstly propose an effective spin Hamiltonian consistent with the symmetry group of the crystal structure. Then we apply classical Monte Carlo simulations to preliminarily study the model and establish a phase diagram. When approaching to the low temperature limit, several magnetic long range orders are observed, including the stripe, the zigzag, the antiferromagnetic (AFM), the ferromagnetic (FM), the incommensurate spiral (IS), the multi- Q , and the 120° ones. We further calculate the thermodynamic properties of the system, such as the temperature dependence of the magnetic susceptibility and the heat capacity. The ordering transition temperatures reflected in the two quantities agree with each other. For most interaction regions, the system is magnetically more susceptible in the ab -plane than in the c -direction. The stripe phase is special, where the susceptibility is fairly isotropic in the whole temperature region. These features provide useful information to understand the magnetic properties of related materials.
科研通智能强力驱动
Strongly Powered by AbleSci AI