计算机科学
失败
卷积神经网络
变压器
编码(内存)
人工智能
计算
分割
编码
建筑
机器学习
计算机工程
模式识别(心理学)
并行计算
算法
物理
艺术
基因
视觉艺术
量子力学
电压
生物化学
化学
作者
Mingyu Ding,Xiaochen Lian,Linjie Yang,Peng Wang,Xian-Min Jin,Zhiwu Lu,Ping Luo
标识
DOI:10.1109/cvpr46437.2021.00300
摘要
High-resolution representations (HR) are essential for dense prediction tasks such as segmentation, detection, and pose estimation. Learning HR representations is typically ignored in previous Neural Architecture Search (NAS) methods that focus on image classification. This work proposes a novel NAS method, called HR-NAS, which is able to find efficient and accurate networks for different tasks, by effectively encoding multiscale contextual information while maintaining high-resolution representations. In HR-NAS, we renovate the NAS search space as well as its searching strategy. To better encode multiscale image contexts in the search space of HR-NAS, we first carefully design a lightweight transformer, whose computational complexity can be dynamically changed with respect to different objective functions and computation budgets. To maintain high-resolution representations of the learned networks, HR-NAS adopts a multi-branch architecture that provides convolutional encoding of multiple feature resolutions, inspired by HRNet [73]. Last, we proposed an efficient fine-grained search strategy to train HR-NAS, which effectively explores the search space, and finds optimal architectures given various tasks and computation resources. As shown in Fig. 1 (a), HR-NAS is capable of achieving state-of-the-art trade-offs between performance and FLOPs for three dense prediction tasks and an image classification task, given only small computational budgets. For example, HR-NAS surpasses SqueezeNAS [63] that is specially designed for semantic segmentation while improving efficiency by 45.9%. Code is available at https://github.com/dingmyu/HR-NAS.
科研通智能强力驱动
Strongly Powered by AbleSci AI