HR-NAS: Searching Efficient High-Resolution Neural Architectures with Lightweight Transformers

计算机科学 失败 卷积神经网络 变压器 编码(内存) 人工智能 计算 分割 编码 建筑 机器学习 计算机工程 模式识别(心理学) 并行计算 算法 艺术 生物化学 化学 物理 量子力学 电压 视觉艺术 基因
作者
Mingyu Ding,Xiaochen Lian,Linjie Yang,Peng Wang,Xian-Min Jin,Zhiwu Lu,Ping Luo
标识
DOI:10.1109/cvpr46437.2021.00300
摘要

High-resolution representations (HR) are essential for dense prediction tasks such as segmentation, detection, and pose estimation. Learning HR representations is typically ignored in previous Neural Architecture Search (NAS) methods that focus on image classification. This work proposes a novel NAS method, called HR-NAS, which is able to find efficient and accurate networks for different tasks, by effectively encoding multiscale contextual information while maintaining high-resolution representations. In HR-NAS, we renovate the NAS search space as well as its searching strategy. To better encode multiscale image contexts in the search space of HR-NAS, we first carefully design a lightweight transformer, whose computational complexity can be dynamically changed with respect to different objective functions and computation budgets. To maintain high-resolution representations of the learned networks, HR-NAS adopts a multi-branch architecture that provides convolutional encoding of multiple feature resolutions, inspired by HRNet [73]. Last, we proposed an efficient fine-grained search strategy to train HR-NAS, which effectively explores the search space, and finds optimal architectures given various tasks and computation resources. As shown in Fig. 1 (a), HR-NAS is capable of achieving state-of-the-art trade-offs between performance and FLOPs for three dense prediction tasks and an image classification task, given only small computational budgets. For example, HR-NAS surpasses SqueezeNAS [63] that is specially designed for semantic segmentation while improving efficiency by 45.9%. Code is available at https://github.com/dingmyu/HR-NAS.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
1秒前
1秒前
ZR14124发布了新的文献求助10
1秒前
MAKEYF完成签到,获得积分10
1秒前
量子星尘发布了新的文献求助30
1秒前
上官若男应助Yuanyuan采纳,获得10
3秒前
dnn_发布了新的文献求助10
3秒前
自然若完成签到,获得积分10
3秒前
5秒前
wkktx发布了新的文献求助10
5秒前
优美紫槐发布了新的文献求助10
6秒前
周新运完成签到,获得积分10
6秒前
7秒前
阿奶完成签到,获得积分10
7秒前
7秒前
7秒前
7秒前
7秒前
7秒前
7秒前
李爱国应助科研通管家采纳,获得10
7秒前
李爱国应助科研通管家采纳,获得10
7秒前
在水一方应助科研通管家采纳,获得10
7秒前
传奇3应助科研通管家采纳,获得10
8秒前
8秒前
NexusExplorer应助科研通管家采纳,获得10
8秒前
无花果应助科研通管家采纳,获得10
8秒前
李爱国应助科研通管家采纳,获得10
8秒前
充电宝应助科研通管家采纳,获得10
8秒前
桐桐应助科研通管家采纳,获得10
8秒前
所所应助科研通管家采纳,获得10
8秒前
8秒前
orixero应助科研通管家采纳,获得10
8秒前
JamesPei应助科研通管家采纳,获得10
8秒前
十一应助科研通管家采纳,获得10
8秒前
小马甲应助科研通管家采纳,获得10
8秒前
10秒前
10秒前
麦地娜发布了新的文献求助10
10秒前
乐乐应助蒸盐粥采纳,获得10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Russian Foreign Policy: Change and Continuity 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5729568
求助须知:如何正确求助?哪些是违规求助? 5319394
关于积分的说明 15317016
捐赠科研通 4876593
什么是DOI,文献DOI怎么找? 2619440
邀请新用户注册赠送积分活动 1568984
关于科研通互助平台的介绍 1525535