HR-NAS: Searching Efficient High-Resolution Neural Architectures with Lightweight Transformers

计算机科学 失败 卷积神经网络 变压器 编码(内存) 人工智能 计算 分割 编码 建筑 机器学习 计算机工程 模式识别(心理学) 并行计算 算法 物理 艺术 基因 视觉艺术 量子力学 电压 生物化学 化学
作者
Mingyu Ding,Xiaochen Lian,Linjie Yang,Peng Wang,Xian-Min Jin,Zhiwu Lu,Ping Luo
标识
DOI:10.1109/cvpr46437.2021.00300
摘要

High-resolution representations (HR) are essential for dense prediction tasks such as segmentation, detection, and pose estimation. Learning HR representations is typically ignored in previous Neural Architecture Search (NAS) methods that focus on image classification. This work proposes a novel NAS method, called HR-NAS, which is able to find efficient and accurate networks for different tasks, by effectively encoding multiscale contextual information while maintaining high-resolution representations. In HR-NAS, we renovate the NAS search space as well as its searching strategy. To better encode multiscale image contexts in the search space of HR-NAS, we first carefully design a lightweight transformer, whose computational complexity can be dynamically changed with respect to different objective functions and computation budgets. To maintain high-resolution representations of the learned networks, HR-NAS adopts a multi-branch architecture that provides convolutional encoding of multiple feature resolutions, inspired by HRNet [73]. Last, we proposed an efficient fine-grained search strategy to train HR-NAS, which effectively explores the search space, and finds optimal architectures given various tasks and computation resources. As shown in Fig. 1 (a), HR-NAS is capable of achieving state-of-the-art trade-offs between performance and FLOPs for three dense prediction tasks and an image classification task, given only small computational budgets. For example, HR-NAS surpasses SqueezeNAS [63] that is specially designed for semantic segmentation while improving efficiency by 45.9%. Code is available at https://github.com/dingmyu/HR-NAS.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
NexusExplorer应助蓝天下载采纳,获得10
1秒前
rachel完成签到,获得积分10
3秒前
Dore完成签到,获得积分20
3秒前
3秒前
4秒前
zero37完成签到,获得积分10
5秒前
xyrehab发布了新的文献求助10
6秒前
xxiao发布了新的文献求助30
6秒前
6秒前
冷艳的小懒虫完成签到 ,获得积分10
7秒前
7秒前
7秒前
8秒前
8秒前
8秒前
ljh发布了新的文献求助10
8秒前
健忘的小懒虫完成签到,获得积分10
9秒前
隐形曼青应助Lion采纳,获得10
10秒前
天涯赤子完成签到,获得积分10
11秒前
墨墨发布了新的文献求助10
11秒前
darsting11发布了新的文献求助30
12秒前
13秒前
二三发布了新的文献求助10
14秒前
14秒前
sea river完成签到 ,获得积分10
14秒前
一一应助科研通管家采纳,获得10
15秒前
科研通AI2S应助科研通管家采纳,获得10
15秒前
852应助科研通管家采纳,获得10
15秒前
NexusExplorer应助科研通管家采纳,获得10
15秒前
CodeCraft应助科研通管家采纳,获得10
15秒前
科目三应助科研通管家采纳,获得10
15秒前
852应助科研通管家采纳,获得10
15秒前
搜集达人应助科研通管家采纳,获得10
16秒前
xianyu发布了新的文献求助10
16秒前
whatever举报求助违规成功
16秒前
kongxiangjiu举报求助违规成功
16秒前
加菲丰丰举报求助违规成功
16秒前
17秒前
17秒前
魁梧的灵枫完成签到,获得积分10
17秒前
高分求助中
歯科矯正学 第7版(或第5版) 1004
SIS-ISO/IEC TS 27100:2024 Information technology — Cybersecurity — Overview and concepts (ISO/IEC TS 27100:2020, IDT)(Swedish Standard) 1000
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Semiconductor Process Reliability in Practice 720
GROUP-THEORY AND POLARIZATION ALGEBRA 500
Mesopotamian divination texts : conversing with the gods : sources from the first millennium BCE 500
Days of Transition. The Parsi Death Rituals(2011) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3231221
求助须知:如何正确求助?哪些是违规求助? 2878324
关于积分的说明 8205848
捐赠科研通 2545777
什么是DOI,文献DOI怎么找? 1375414
科研通“疑难数据库(出版商)”最低求助积分说明 647390
邀请新用户注册赠送积分活动 622448