期刊:Chinese Physics [Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences] 日期:2021-01-01卷期号:70 (17): 178401-178401被引量:1
Current photovoltaic market is dominated by crystalline silicon (c-Si) solar modules and this status will last for next decades. Among all high-efficiency c-Si solar cells, the tunnel oxide passivated contact (TOPCon) solar cell has attracted much attention due to its excellent passivation and compatibility with the traditional c-Si solar cells. The so-called tunnel oxide passivated contact (TOPCon) consists of an ultra-thin silicon oxide layer less than 2 nm in thickness and a heavily doped poly-Si layer, which is used for implementing effective passivation and selective collection of carriers. This TOPCon solar cell has some advantages including no laser contact opening, no light-induced degradation and no elevated temperature-induced degradation because of N-type c-Si wafer, compatibility with high temperature sintering and technical scalability. This paper first introduces the basic structure and principles of TOPCon solar cells, then compares the existing methods of preparing ultra-thin silicon oxide layer and heavily doped poly-Si layer, and finally points out the future research direction of this cell based on the analysis of the current research status.