A two-step method for delamination detection in composite laminates using experience-based learning algorithm

分层(地质) 复合材料层合板 计算机科学 复合数 算法 材料科学 人工智能 复合材料
作者
Tongyi Zheng,Weili Luo,Huawei Tong,Xin Liang
出处
期刊:Structural Health Monitoring-an International Journal [SAGE]
卷期号:21 (3): 965-983 被引量:2
标识
DOI:10.1177/14759217211018114
摘要

Delamination in composite laminates reduces the structural stiffness and thus causes changes in the vibration responses of the laminates. Therefore, it is feasible to employ dynamic characteristics (such as natural frequencies and mode shapes) for delamination detection by using an optimization method. In the present study, a two-step method is proposed for the delamination detection in composite laminates using an experience-based learning algorithm. In the first step, one-dimensional equivalent through-thickness beam elements are employed to model the composite laminated beam and potential delamination locations are identified. In the second step, a typical three-dimensional finite mesh is utilized for the beam’s modeling and the detailed delamination information (including the delamination location, size, and interface layer) is detected. This two-step method combines the advantages of the two different modeling techniques and is able to significantly reduce the computational cost without reducing detection accuracy. The proposed method is applied for an eight-layer quasi-isotropic symmetric (0/-45/45/90) s composited beam with different delamination situations to verify its effectiveness and robustness. The performance of the two-step method is demonstrated by comparing with the one-step method and other three state-of-the-art algorithms (CMFOA, PSO, and SSA). Moreover, the influence of artificial noise on the accuracy of the detection performance is also investigated. Both numerical and experimental results confirm the superiority of the proposed method for delamination detection in composite laminates especially for the prediction of delamination interface.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
TMEDA发布了新的文献求助10
刚刚
leslie完成签到,获得积分10
刚刚
2秒前
wuyongmei完成签到 ,获得积分10
3秒前
leslie发布了新的文献求助10
3秒前
在水一方应助研友_38KgB8采纳,获得10
3秒前
动听平露发布了新的文献求助10
4秒前
小巧小海豚完成签到 ,获得积分10
4秒前
4秒前
道友且慢完成签到,获得积分10
5秒前
林夕完成签到,获得积分10
6秒前
7秒前
京京发布了新的文献求助10
7秒前
洁净艳一完成签到,获得积分10
8秒前
林一存发布了新的文献求助10
11秒前
14秒前
江桥完成签到,获得积分10
16秒前
17秒前
小蘑菇应助机智觅儿采纳,获得10
19秒前
19秒前
田様应助聪慧的玉米采纳,获得30
19秒前
20秒前
科研通AI2S应助谭文采纳,获得10
22秒前
22秒前
ZJH发布了新的文献求助10
22秒前
23秒前
迅速海亦发布了新的文献求助10
23秒前
24秒前
tomboy发布了新的文献求助10
25秒前
25秒前
汉堡包应助Rita采纳,获得10
26秒前
26秒前
13完成签到,获得积分10
27秒前
27秒前
白小白发布了新的文献求助10
27秒前
28秒前
28秒前
小旺旺完成签到,获得积分10
28秒前
29秒前
朱小小完成签到,获得积分10
30秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Foreign Policy of the French Second Empire: A Bibliography 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3146304
求助须知:如何正确求助?哪些是违规求助? 2797763
关于积分的说明 7825201
捐赠科研通 2454079
什么是DOI,文献DOI怎么找? 1306010
科研通“疑难数据库(出版商)”最低求助积分说明 627638
版权声明 601503