A two-step method for delamination detection in composite laminates using experience-based learning algorithm

分层(地质) 复合材料层合板 计算机科学 复合数 算法 材料科学 人工智能 复合材料
作者
Tongyi Zheng,Weili Luo,Huawei Tong,Xin Liang
出处
期刊:Structural Health Monitoring-an International Journal [SAGE Publishing]
卷期号:21 (3): 965-983 被引量:2
标识
DOI:10.1177/14759217211018114
摘要

Delamination in composite laminates reduces the structural stiffness and thus causes changes in the vibration responses of the laminates. Therefore, it is feasible to employ dynamic characteristics (such as natural frequencies and mode shapes) for delamination detection by using an optimization method. In the present study, a two-step method is proposed for the delamination detection in composite laminates using an experience-based learning algorithm. In the first step, one-dimensional equivalent through-thickness beam elements are employed to model the composite laminated beam and potential delamination locations are identified. In the second step, a typical three-dimensional finite mesh is utilized for the beam’s modeling and the detailed delamination information (including the delamination location, size, and interface layer) is detected. This two-step method combines the advantages of the two different modeling techniques and is able to significantly reduce the computational cost without reducing detection accuracy. The proposed method is applied for an eight-layer quasi-isotropic symmetric (0/-45/45/90) s composited beam with different delamination situations to verify its effectiveness and robustness. The performance of the two-step method is demonstrated by comparing with the one-step method and other three state-of-the-art algorithms (CMFOA, PSO, and SSA). Moreover, the influence of artificial noise on the accuracy of the detection performance is also investigated. Both numerical and experimental results confirm the superiority of the proposed method for delamination detection in composite laminates especially for the prediction of delamination interface.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
罗伯特骚塞完成签到,获得积分10
刚刚
Hello应助Pt-SACs采纳,获得10
刚刚
一一一应助Distance采纳,获得10
刚刚
刚刚
xyp_zjut应助体贴凌柏采纳,获得10
1秒前
量子星尘发布了新的文献求助50
1秒前
在水一方应助妍儿采纳,获得10
2秒前
蔺不平完成签到,获得积分10
3秒前
3秒前
qingxinhuo完成签到 ,获得积分10
3秒前
5秒前
科研通AI5应助枕星采纳,获得10
6秒前
小曾应助pakiorder采纳,获得10
12秒前
wxy完成签到,获得积分10
13秒前
分析完成签到 ,获得积分10
13秒前
hulin_zjxu完成签到,获得积分10
13秒前
桃紫完成签到,获得积分10
15秒前
小董不懂完成签到,获得积分10
16秒前
椰子完成签到,获得积分10
16秒前
沐沐溪三清完成签到,获得积分10
16秒前
17秒前
刘丰完成签到 ,获得积分10
19秒前
郑桂庆完成签到 ,获得积分10
20秒前
zhang完成签到 ,获得积分10
20秒前
yuchen完成签到,获得积分10
21秒前
喜悦的水云完成签到 ,获得积分10
21秒前
22秒前
zhaokunfeng完成签到,获得积分10
22秒前
Y123发布了新的文献求助10
22秒前
wu完成签到,获得积分10
22秒前
高高诗柳完成签到 ,获得积分10
22秒前
王金豪完成签到,获得积分10
22秒前
LSS完成签到,获得积分10
22秒前
榜一大哥的负担完成签到 ,获得积分10
23秒前
Lucas应助qi0625采纳,获得10
23秒前
顾矜应助以筱采纳,获得10
24秒前
景清完成签到,获得积分10
24秒前
细心香烟完成签到 ,获得积分10
24秒前
hu完成签到 ,获得积分10
24秒前
HQ完成签到,获得积分10
24秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Handbook of Industrial Diamonds.Vol2 1100
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038368
求助须知:如何正确求助?哪些是违规求助? 3576068
关于积分的说明 11374313
捐赠科研通 3305780
什么是DOI,文献DOI怎么找? 1819322
邀请新用户注册赠送积分活动 892672
科研通“疑难数据库(出版商)”最低求助积分说明 815029