A two-step method for delamination detection in composite laminates using experience-based learning algorithm

分层(地质) 复合材料层合板 计算机科学 复合数 算法 材料科学 人工智能 复合材料
作者
Tongyi Zheng,Weili Luo,Huawei Tong,Xin Liang
出处
期刊:Structural Health Monitoring-an International Journal [SAGE Publishing]
卷期号:21 (3): 965-983 被引量:2
标识
DOI:10.1177/14759217211018114
摘要

Delamination in composite laminates reduces the structural stiffness and thus causes changes in the vibration responses of the laminates. Therefore, it is feasible to employ dynamic characteristics (such as natural frequencies and mode shapes) for delamination detection by using an optimization method. In the present study, a two-step method is proposed for the delamination detection in composite laminates using an experience-based learning algorithm. In the first step, one-dimensional equivalent through-thickness beam elements are employed to model the composite laminated beam and potential delamination locations are identified. In the second step, a typical three-dimensional finite mesh is utilized for the beam’s modeling and the detailed delamination information (including the delamination location, size, and interface layer) is detected. This two-step method combines the advantages of the two different modeling techniques and is able to significantly reduce the computational cost without reducing detection accuracy. The proposed method is applied for an eight-layer quasi-isotropic symmetric (0/-45/45/90) s composited beam with different delamination situations to verify its effectiveness and robustness. The performance of the two-step method is demonstrated by comparing with the one-step method and other three state-of-the-art algorithms (CMFOA, PSO, and SSA). Moreover, the influence of artificial noise on the accuracy of the detection performance is also investigated. Both numerical and experimental results confirm the superiority of the proposed method for delamination detection in composite laminates especially for the prediction of delamination interface.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
健忘的幼晴完成签到,获得积分10
1秒前
1秒前
2秒前
半天发布了新的文献求助10
2秒前
ForZero完成签到 ,获得积分10
2秒前
2秒前
3秒前
4秒前
打打应助此晴可待采纳,获得10
6秒前
嗯嗯发布了新的文献求助10
6秒前
7秒前
yufanhui应助MizzZeus采纳,获得10
7秒前
李健应助不安的秋白采纳,获得10
7秒前
苹果的苹发布了新的文献求助10
8秒前
顾矜应助沉静早晨采纳,获得10
8秒前
半天完成签到,获得积分10
8秒前
yu发布了新的文献求助10
8秒前
Yuman发布了新的文献求助10
8秒前
领导范儿应助陌路孤星采纳,获得10
9秒前
wjx发布了新的文献求助10
9秒前
9秒前
李爱国应助whj采纳,获得10
9秒前
9秒前
烟花应助小马哥采纳,获得10
10秒前
10秒前
10秒前
10秒前
10秒前
10秒前
wawoo完成签到,获得积分10
12秒前
上官若男应助dora采纳,获得10
13秒前
123发布了新的文献求助10
14秒前
滴答滴发布了新的文献求助10
14秒前
tzy发布了新的文献求助10
14秒前
lllllljmjmjm发布了新的文献求助10
14秒前
14秒前
大地发布了新的文献求助10
15秒前
15秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 700
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Effective Learning and Mental Wellbeing 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3974856
求助须知:如何正确求助?哪些是违规求助? 3519400
关于积分的说明 11198085
捐赠科研通 3255563
什么是DOI,文献DOI怎么找? 1797860
邀请新用户注册赠送积分活动 877208
科研通“疑难数据库(出版商)”最低求助积分说明 806219