Inconsistency-Aware Uncertainty Estimation for Semi-Supervised Medical Image Segmentation

分割 人工智能 计算机科学 尺度空间分割 图像分割 像素 基于分割的对象分类 模式识别(心理学) 水准点(测量) 熵(时间箭头) 计算机视觉 物理 量子力学 大地测量学 地理
作者
Yinghuan Shi,Jian Zhang,Tong Ling,Jiwen Lu,Yefeng Zheng,Qian Yu,Lei Qi,Yang Gao
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:41 (3): 608-620 被引量:107
标识
DOI:10.1109/tmi.2021.3117888
摘要

In semi-supervised medical image segmentation, most previous works draw on the common assumption that higher entropy means higher uncertainty. In this paper, we investigate a novel method of estimating uncertainty. We observe that, when assigned different misclassification costs in a certain degree, if the segmentation result of a pixel becomes inconsistent, this pixel shows a relative uncertainty in its segmentation. Therefore, we present a new semi-supervised segmentation model, namely, conservative-radical network ( CoraNet in short) based on our uncertainty estimation and separate self-training strategy. In particular, our CoraNet model consists of three major components: a conservative-radical module (CRM), a certain region segmentation network (C-SN), and an uncertain region segmentation network (UC-SN) that could be alternatively trained in an end-to-end manner. We have extensively evaluated our method on various segmentation tasks with publicly available benchmark datasets, including CT pancreas, MR endocardium, and MR multi-structures segmentation on the ACDC dataset. Compared with the current state of the art, our CoraNet has demonstrated superior performance. In addition, we have also analyzed its connection with and difference from conventional methods of uncertainty estimation in semi-supervised medical image segmentation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI2S应助caibi采纳,获得10
刚刚
情怀应助caibi采纳,获得10
刚刚
zll完成签到 ,获得积分10
刚刚
1秒前
2秒前
踏实的蘑菇完成签到,获得积分10
2秒前
EchoJY应助朱荧荧采纳,获得10
2秒前
科研通AI2S应助十一采纳,获得10
3秒前
科研通AI2S应助十一采纳,获得10
3秒前
百里酚蓝完成签到 ,获得积分10
3秒前
jevon应助Jay采纳,获得10
4秒前
SK发布了新的文献求助10
5秒前
情怀应助xl采纳,获得10
5秒前
Lily发布了新的文献求助10
6秒前
zheng2001完成签到,获得积分10
6秒前
kylin完成签到,获得积分10
6秒前
TUTU完成签到,获得积分20
6秒前
sos完成签到,获得积分10
7秒前
义气珩完成签到,获得积分10
7秒前
是一整个圆完成签到,获得积分10
7秒前
7秒前
顺心若剑发布了新的文献求助10
8秒前
kxkx完成签到,获得积分10
9秒前
希望天下0贩的0应助沐柒采纳,获得10
9秒前
9秒前
NexusExplorer应助科研通管家采纳,获得30
9秒前
小马甲应助科研通管家采纳,获得10
9秒前
科研通AI2S应助科研通管家采纳,获得10
9秒前
彭于彦祖应助科研通管家采纳,获得30
10秒前
在水一方应助科研通管家采纳,获得10
10秒前
李健应助科研通管家采纳,获得10
10秒前
Jasper应助科研通管家采纳,获得10
10秒前
10秒前
烟花应助科研通管家采纳,获得10
10秒前
今后应助科研通管家采纳,获得10
10秒前
NexusExplorer应助科研通管家采纳,获得10
10秒前
彭于彦祖应助科研通管家采纳,获得30
10秒前
JamesPei应助科研通管家采纳,获得10
10秒前
大模型应助科研通管家采纳,获得10
10秒前
随遇而安应助科研通管家采纳,获得10
10秒前
高分求助中
Earth System Geophysics 1000
Studies on the inheritance of some characters in rice Oryza sativa L 600
Medicina di laboratorio. Logica e patologia clinica 600
mTOR signalling in RPGR-associated Retinitis Pigmentosa 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
Aspects of Babylonian celestial divination: the lunar eclipse tablets of Enūma Anu Enlil 500
Semiconductor Process Reliability in Practice 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3206210
求助须知:如何正确求助?哪些是违规求助? 2855622
关于积分的说明 8100302
捐赠科研通 2520593
什么是DOI,文献DOI怎么找? 1353618
科研通“疑难数据库(出版商)”最低求助积分说明 641806
邀请新用户注册赠送积分活动 612874