AutoML to Date and Beyond: Challenges and Opportunities

人工智能 机器学习 计算机科学 领域(数学分析) 过程(计算) 管道(软件) 自动化 数据科学 工程类 数学 机械工程 操作系统 数学分析 程序设计语言
作者
Shubhra Kanti Karmaker Santu,Md. Mahadi Hassan,Micah J. Smith,Lei Xu,ChengXiang Zhai,Kalyan Veeramachaneni
出处
期刊:Cornell University - arXiv
摘要

As big data becomes ubiquitous across domains, and more and more stakeholders aspire to make the most of their data, demand for machine learning tools has spurred researchers to explore the possibilities of automated machine learning (AutoML). AutoML tools aim to make machine learning accessible for non-machine learning experts (domain experts), to improve the efficiency of machine learning, and to accelerate machine learning research. But although automation and efficiency are among AutoML's main selling points, the process still requires human involvement at a number of vital steps, including understanding the attributes of domain-specific data, defining prediction problems, creating a suitable training data set, and selecting a promising machine learning technique. These steps often require a prolonged back-and-forth that makes this process inefficient for domain experts and data scientists alike, and keeps so-called AutoML systems from being truly automatic. In this review article, we introduce a new classification system for AutoML systems, using a seven-tiered schematic to distinguish these systems based on their level of autonomy. We begin by describing what an end-to-end machine learning pipeline actually looks like, and which subtasks of the machine learning pipeline have been automated so far. We highlight those subtasks which are still done manually - generally by a data scientist - and explain how this limits domain experts' access to machine learning. Next, we introduce our novel level-based taxonomy for AutoML systems and define each level according to the scope of automation support provided. Finally, we lay out a roadmap for the future, pinpointing the research required to further automate the end-to-end machine learning pipeline and discussing important challenges that stand in the way of this ambitious goal.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
123发布了新的文献求助10
1秒前
rachel关注了科研通微信公众号
2秒前
吴晨曦发布了新的文献求助10
2秒前
瓣落的碎梦完成签到,获得积分10
3秒前
onmyway完成签到,获得积分10
3秒前
superray发布了新的文献求助10
4秒前
高贵魂幽完成签到,获得积分10
4秒前
4秒前
orixero应助阳光元正采纳,获得10
4秒前
4秒前
科研通AI2S应助苏谶采纳,获得10
5秒前
6秒前
风行君完成签到,获得积分10
7秒前
高高梦山发布了新的文献求助10
8秒前
逍遥子完成签到,获得积分20
9秒前
超级无敌万能小金毛完成签到,获得积分10
11秒前
Akim应助华中科技大学采纳,获得10
11秒前
11秒前
彭于晏应助Lion采纳,获得10
12秒前
12秒前
13秒前
13秒前
李健的小迷弟应助jenninelzl采纳,获得10
15秒前
诩阽完成签到,获得积分10
15秒前
16秒前
去海边吗发布了新的文献求助10
16秒前
16秒前
yin完成签到,获得积分10
16秒前
科研通AI2S应助禹宙中欣采纳,获得10
18秒前
18秒前
科研废物完成签到,获得积分20
19秒前
甜甜的又蓝完成签到 ,获得积分10
20秒前
20秒前
华仔应助顾陌采纳,获得10
21秒前
22秒前
一头小飞猪完成签到,获得积分10
23秒前
24秒前
24秒前
Lion发布了新的文献求助10
25秒前
高分求助中
歯科矯正学 第7版(或第5版) 1004
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Semiconductor Process Reliability in Practice 720
GROUP-THEORY AND POLARIZATION ALGEBRA 500
Mesopotamian divination texts : conversing with the gods : sources from the first millennium BCE 500
Days of Transition. The Parsi Death Rituals(2011) 500
The Heath Anthology of American Literature: Early Nineteenth Century 1800 - 1865 Vol. B 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3228806
求助须知:如何正确求助?哪些是违规求助? 2876566
关于积分的说明 8195759
捐赠科研通 2543848
什么是DOI,文献DOI怎么找? 1374072
科研通“疑难数据库(出版商)”最低求助积分说明 646872
邀请新用户注册赠送积分活动 621509