亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

High‐throughput computational screening of porous polymer networks for natural gas sweetening based on a neural network

吸附 多孔性 甜味剂 人工神经网络 计算机科学 选择性 纳米技术 材料科学 聚合物 化学工程 天然气 生物系统 人工智能 化学 工程类 有机化学 复合材料 甜味剂 催化作用 生物 食品科学
作者
Xiuyang Lü,Yujing Wu,Xuanjun Wu,Zhixiang Cao,Xionghui Wei,Weiquan Cai
出处
期刊:Aiche Journal [Wiley]
卷期号:68 (1) 被引量:7
标识
DOI:10.1002/aic.17433
摘要

Abstract The capture and storage of toxic industrial chemicals such as H 2 S using porous polymer networks (PPNs) has shown promising application because of their high porosity, high surface area, high stability, low‐cost and lightweight. In this work, 17,846 PPNs with the diamond‐like topology were computationally screened to identify the optimal adsorbents for the removal of H 2 S and CO 2 from humid natural gas based on the combination of molecular simulation and machine learning algorithms. The top‐performing PPNs such as hPAFs‐0201 with the highest adsorption performance scores (APS) were evaluated and identified based on their adsorption capacities and selectivity for H 2 S and CO 2 . The strong affinity between water molecules and the framework atoms in a few PPNs has a significant impact on the adsorption selectivity of acid gases. Based on decision tree analysis, we found two main design paths of the optimal PPNs for natural gas sweetening, which are the PPNs with LCD ≤ 4.648 Å, V f ≤ 0.035, and PLD ≤ 3.889 Å, and those with 4.648 Å ≤ LCD ≤ 5.959 Å, ρ ≤ 837 kg m −3 . In addition, we constructed different machine learning models, particularly artificial neural network, available to accurately predict the APS of PPNs. 2D projection map of geometrical properties of PPNs using the t‐distributed stochastic neighbor embedding (t‐SNE) method shows that the screened 390 samples exhibit the similar structures. Among the top‐23 PPNs with the highest APS, hPAFs‐0201 has enhanced natural gas sweetening performance due to its strong affinity between the N‐rich organic linkers and acid gases. hPAFs‐0752 shows the highest isosteric adsorption heat of H 2 S and CO 2 ( Q ° st = 49.84 kJ mol −1 ), resulting in its second‐highest APS as well as high hydrophilicity. Based on the combination of molecular simulation and machine learning, comprehensive insights into the high‐throughput screening of PPNs in this work will provide new ideas for the design of high‐performance PPNs for gas separation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI5应助jitianxing采纳,获得10
56秒前
我是老大应助科研通管家采纳,获得10
1分钟前
forest完成签到,获得积分10
1分钟前
2分钟前
jitianxing发布了新的文献求助10
2分钟前
vbnn完成签到 ,获得积分10
2分钟前
冷傲半邪完成签到,获得积分10
2分钟前
无幻完成签到 ,获得积分10
2分钟前
松松完成签到 ,获得积分10
2分钟前
2分钟前
CES_SH完成签到,获得积分10
2分钟前
数乱了梨花完成签到 ,获得积分0
3分钟前
已知中的未知完成签到 ,获得积分10
3分钟前
3分钟前
袁梦发布了新的文献求助10
3分钟前
科研通AI6应助袁梦采纳,获得10
4分钟前
上官若男应助马良采纳,获得10
4分钟前
贰鸟完成签到,获得积分0
4分钟前
4分钟前
科研通AI5应助jitianxing采纳,获得10
4分钟前
马良发布了新的文献求助10
4分钟前
4分钟前
花落无声完成签到 ,获得积分10
4分钟前
jitianxing发布了新的文献求助10
4分钟前
jitianxing完成签到,获得积分20
5分钟前
科目三应助科研通管家采纳,获得10
5分钟前
科研通AI5应助jitianxing采纳,获得10
5分钟前
沉默白桃完成签到 ,获得积分10
6分钟前
感动清炎完成签到,获得积分10
6分钟前
Ava应助oleskarabach采纳,获得10
6分钟前
8分钟前
领导范儿应助gszy1975采纳,获得10
9分钟前
靓丽的熠彤完成签到,获得积分10
9分钟前
10分钟前
四氧化三铁完成签到,获得积分10
10分钟前
10分钟前
云云发布了新的文献求助10
10分钟前
wuju完成签到,获得积分10
10分钟前
Raunio完成签到,获得积分10
10分钟前
共享精神应助科研通管家采纳,获得10
11分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
On the Validity of the Independent-Particle Model and the Sum-rule Approach to the Deeply Bound States in Nuclei 220
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4582451
求助须知:如何正确求助?哪些是违规求助? 4000198
关于积分的说明 12382246
捐赠科研通 3675167
什么是DOI,文献DOI怎么找? 2025731
邀请新用户注册赠送积分活动 1059367
科研通“疑难数据库(出版商)”最低求助积分说明 946069