清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

High‐throughput computational screening of porous polymer networks for natural gas sweetening based on a neural network

吸附 多孔性 甜味剂 人工神经网络 计算机科学 选择性 纳米技术 材料科学 聚合物 化学工程 天然气 生物系统 人工智能 化学 工程类 有机化学 复合材料 甜味剂 催化作用 生物 食品科学
作者
Xiuyang Lü,Yujing Wu,Xuanjun Wu,Zhixiang Cao,Xionghui Wei,Weiquan Cai
出处
期刊:Aiche Journal [Wiley]
卷期号:68 (1) 被引量:7
标识
DOI:10.1002/aic.17433
摘要

Abstract The capture and storage of toxic industrial chemicals such as H 2 S using porous polymer networks (PPNs) has shown promising application because of their high porosity, high surface area, high stability, low‐cost and lightweight. In this work, 17,846 PPNs with the diamond‐like topology were computationally screened to identify the optimal adsorbents for the removal of H 2 S and CO 2 from humid natural gas based on the combination of molecular simulation and machine learning algorithms. The top‐performing PPNs such as hPAFs‐0201 with the highest adsorption performance scores (APS) were evaluated and identified based on their adsorption capacities and selectivity for H 2 S and CO 2 . The strong affinity between water molecules and the framework atoms in a few PPNs has a significant impact on the adsorption selectivity of acid gases. Based on decision tree analysis, we found two main design paths of the optimal PPNs for natural gas sweetening, which are the PPNs with LCD ≤ 4.648 Å, V f ≤ 0.035, and PLD ≤ 3.889 Å, and those with 4.648 Å ≤ LCD ≤ 5.959 Å, ρ ≤ 837 kg m −3 . In addition, we constructed different machine learning models, particularly artificial neural network, available to accurately predict the APS of PPNs. 2D projection map of geometrical properties of PPNs using the t‐distributed stochastic neighbor embedding (t‐SNE) method shows that the screened 390 samples exhibit the similar structures. Among the top‐23 PPNs with the highest APS, hPAFs‐0201 has enhanced natural gas sweetening performance due to its strong affinity between the N‐rich organic linkers and acid gases. hPAFs‐0752 shows the highest isosteric adsorption heat of H 2 S and CO 2 ( Q ° st = 49.84 kJ mol −1 ), resulting in its second‐highest APS as well as high hydrophilicity. Based on the combination of molecular simulation and machine learning, comprehensive insights into the high‐throughput screening of PPNs in this work will provide new ideas for the design of high‐performance PPNs for gas separation.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
xl关注了科研通微信公众号
3秒前
lamitky发布了新的文献求助10
6秒前
14秒前
18秒前
23秒前
nhzz2023完成签到 ,获得积分0
25秒前
lamitky完成签到,获得积分10
25秒前
theo完成签到 ,获得积分10
34秒前
ghost完成签到 ,获得积分10
42秒前
梦游菌完成签到 ,获得积分10
46秒前
anan完成签到,获得积分10
53秒前
李健应助anan采纳,获得10
59秒前
daixan89完成签到 ,获得积分10
1分钟前
NattyPoe应助科研通管家采纳,获得10
1分钟前
alex12259完成签到 ,获得积分10
1分钟前
vbnn完成签到 ,获得积分10
1分钟前
欣欣完成签到 ,获得积分10
1分钟前
无心的星月完成签到 ,获得积分10
1分钟前
Emma完成签到 ,获得积分10
1分钟前
健康的小鸽子完成签到 ,获得积分10
1分钟前
1分钟前
zj完成签到 ,获得积分10
1分钟前
1分钟前
自信南霜完成签到 ,获得积分10
2分钟前
WEN发布了新的文献求助10
2分钟前
林小木完成签到,获得积分10
2分钟前
2分钟前
量子星尘发布了新的文献求助10
2分钟前
Turing完成签到,获得积分10
2分钟前
Turing完成签到,获得积分10
3分钟前
李爱国应助Developing_human采纳,获得10
3分钟前
leibaozun完成签到 ,获得积分10
3分钟前
四叶草完成签到 ,获得积分10
3分钟前
dx完成签到,获得积分10
3分钟前
debu9完成签到,获得积分10
3分钟前
852应助科研通管家采纳,获得10
3分钟前
NattyPoe应助科研通管家采纳,获得10
3分钟前
wuludie应助科研通管家采纳,获得10
3分钟前
wuludie应助科研通管家采纳,获得10
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5664649
求助须知:如何正确求助?哪些是违规求助? 4867040
关于积分的说明 15108233
捐赠科研通 4823308
什么是DOI,文献DOI怎么找? 2582201
邀请新用户注册赠送积分活动 1536254
关于科研通互助平台的介绍 1494653