High‐throughput computational screening of porous polymer networks for natural gas sweetening based on a neural network

吸附 多孔性 甜味剂 人工神经网络 计算机科学 选择性 纳米技术 材料科学 聚合物 化学工程 天然气 生物系统 人工智能 化学 工程类 有机化学 复合材料 甜味剂 催化作用 生物 食品科学
作者
Xiuyang Lü,Yujing Wu,Xuanjun Wu,Zhixiang Cao,Xionghui Wei,Weiquan Cai
出处
期刊:Aiche Journal [Wiley]
卷期号:68 (1) 被引量:7
标识
DOI:10.1002/aic.17433
摘要

Abstract The capture and storage of toxic industrial chemicals such as H 2 S using porous polymer networks (PPNs) has shown promising application because of their high porosity, high surface area, high stability, low‐cost and lightweight. In this work, 17,846 PPNs with the diamond‐like topology were computationally screened to identify the optimal adsorbents for the removal of H 2 S and CO 2 from humid natural gas based on the combination of molecular simulation and machine learning algorithms. The top‐performing PPNs such as hPAFs‐0201 with the highest adsorption performance scores (APS) were evaluated and identified based on their adsorption capacities and selectivity for H 2 S and CO 2 . The strong affinity between water molecules and the framework atoms in a few PPNs has a significant impact on the adsorption selectivity of acid gases. Based on decision tree analysis, we found two main design paths of the optimal PPNs for natural gas sweetening, which are the PPNs with LCD ≤ 4.648 Å, V f ≤ 0.035, and PLD ≤ 3.889 Å, and those with 4.648 Å ≤ LCD ≤ 5.959 Å, ρ ≤ 837 kg m −3 . In addition, we constructed different machine learning models, particularly artificial neural network, available to accurately predict the APS of PPNs. 2D projection map of geometrical properties of PPNs using the t‐distributed stochastic neighbor embedding (t‐SNE) method shows that the screened 390 samples exhibit the similar structures. Among the top‐23 PPNs with the highest APS, hPAFs‐0201 has enhanced natural gas sweetening performance due to its strong affinity between the N‐rich organic linkers and acid gases. hPAFs‐0752 shows the highest isosteric adsorption heat of H 2 S and CO 2 ( Q ° st = 49.84 kJ mol −1 ), resulting in its second‐highest APS as well as high hydrophilicity. Based on the combination of molecular simulation and machine learning, comprehensive insights into the high‐throughput screening of PPNs in this work will provide new ideas for the design of high‐performance PPNs for gas separation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
山水之乐发布了新的文献求助10
1秒前
Cupid完成签到,获得积分10
1秒前
FashionBoy应助零点起步采纳,获得10
2秒前
辛艺完成签到,获得积分20
2秒前
华仔应助甘123采纳,获得10
2秒前
3秒前
dfghjkl发布了新的文献求助10
4秒前
rongrongrong完成签到,获得积分10
4秒前
安详的听白完成签到,获得积分10
4秒前
善学以致用应助辛艺采纳,获得10
5秒前
如泣草芥完成签到,获得积分0
7秒前
乾乾完成签到,获得积分10
7秒前
Lydia完成签到,获得积分20
7秒前
8秒前
9秒前
XXGG完成签到 ,获得积分10
9秒前
9秒前
10秒前
卜凡发布了新的文献求助10
10秒前
媛媛发布了新的文献求助10
12秒前
12秒前
蔡静雯popo发布了新的文献求助10
14秒前
苏世完成签到,获得积分10
15秒前
nutliu完成签到,获得积分10
15秒前
15秒前
16秒前
标致的星月完成签到,获得积分10
16秒前
16秒前
Gakay发布了新的文献求助10
16秒前
零点起步发布了新的文献求助10
16秒前
gege完成签到,获得积分10
16秒前
Csy完成签到,获得积分10
18秒前
19秒前
gggggd完成签到,获得积分10
19秒前
一米阳光发布了新的文献求助10
21秒前
希望天下0贩的0应助老张采纳,获得10
21秒前
21秒前
77发布了新的文献求助10
22秒前
22秒前
CodeCraft应助ZZY采纳,获得10
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
On the Angular Distribution in Nuclear Reactions and Coincidence Measurements 1000
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
A complete Carnosaur Skeleton From Zigong, Sichuan- Yangchuanosaurus Hepingensis 四川自贡一完整肉食龙化石-和平永川龙 600
Le transsexualisme : étude nosographique et médico-légale (en PDF) 500
Elle ou lui ? Histoire des transsexuels en France 500
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5310786
求助须知:如何正确求助?哪些是违规求助? 4455001
关于积分的说明 13861687
捐赠科研通 4343099
什么是DOI,文献DOI怎么找? 2384947
邀请新用户注册赠送积分活动 1379413
关于科研通互助平台的介绍 1347721