亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

High‐throughput computational screening of porous polymer networks for natural gas sweetening based on a neural network

吸附 多孔性 甜味剂 人工神经网络 计算机科学 选择性 纳米技术 材料科学 聚合物 化学工程 天然气 生物系统 人工智能 化学 工程类 有机化学 复合材料 甜味剂 催化作用 生物 食品科学
作者
Xiuyang Lü,Yujing Wu,Xuanjun Wu,Zhixiang Cao,Xionghui Wei,Weiquan Cai
出处
期刊:Aiche Journal [Wiley]
卷期号:68 (1) 被引量:7
标识
DOI:10.1002/aic.17433
摘要

Abstract The capture and storage of toxic industrial chemicals such as H 2 S using porous polymer networks (PPNs) has shown promising application because of their high porosity, high surface area, high stability, low‐cost and lightweight. In this work, 17,846 PPNs with the diamond‐like topology were computationally screened to identify the optimal adsorbents for the removal of H 2 S and CO 2 from humid natural gas based on the combination of molecular simulation and machine learning algorithms. The top‐performing PPNs such as hPAFs‐0201 with the highest adsorption performance scores (APS) were evaluated and identified based on their adsorption capacities and selectivity for H 2 S and CO 2 . The strong affinity between water molecules and the framework atoms in a few PPNs has a significant impact on the adsorption selectivity of acid gases. Based on decision tree analysis, we found two main design paths of the optimal PPNs for natural gas sweetening, which are the PPNs with LCD ≤ 4.648 Å, V f ≤ 0.035, and PLD ≤ 3.889 Å, and those with 4.648 Å ≤ LCD ≤ 5.959 Å, ρ ≤ 837 kg m −3 . In addition, we constructed different machine learning models, particularly artificial neural network, available to accurately predict the APS of PPNs. 2D projection map of geometrical properties of PPNs using the t‐distributed stochastic neighbor embedding (t‐SNE) method shows that the screened 390 samples exhibit the similar structures. Among the top‐23 PPNs with the highest APS, hPAFs‐0201 has enhanced natural gas sweetening performance due to its strong affinity between the N‐rich organic linkers and acid gases. hPAFs‐0752 shows the highest isosteric adsorption heat of H 2 S and CO 2 ( Q ° st = 49.84 kJ mol −1 ), resulting in its second‐highest APS as well as high hydrophilicity. Based on the combination of molecular simulation and machine learning, comprehensive insights into the high‐throughput screening of PPNs in this work will provide new ideas for the design of high‐performance PPNs for gas separation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
18秒前
天天快乐应助优雅的涵瑶采纳,获得10
23秒前
这个手刹不太灵完成签到 ,获得积分10
24秒前
29秒前
baymin完成签到 ,获得积分10
31秒前
优雅的涵瑶完成签到,获得积分20
31秒前
35秒前
酷波er应助科研通管家采纳,获得10
35秒前
爱静静应助科研通管家采纳,获得20
35秒前
英俊的铭应助科研通管家采纳,获得10
35秒前
35秒前
40秒前
51秒前
去去去去完成签到,获得积分10
1分钟前
1分钟前
去去去去发布了新的文献求助30
1分钟前
1分钟前
1分钟前
SciGPT应助去去去去采纳,获得10
1分钟前
1分钟前
潘善若发布了新的文献求助10
1分钟前
Perion完成签到 ,获得积分10
1分钟前
潘善若完成签到,获得积分10
1分钟前
kkk驳回了Ava应助
1分钟前
犹豫的晓丝完成签到 ,获得积分10
1分钟前
呆萌的傲蕾完成签到,获得积分20
2分钟前
FashionBoy应助Elena采纳,获得10
2分钟前
李爱国应助呆萌的傲蕾采纳,获得10
2分钟前
落后的西牛完成签到 ,获得积分10
2分钟前
搜集达人应助不安映秋采纳,获得10
2分钟前
侯小菊完成签到,获得积分20
2分钟前
2分钟前
Elena发布了新的文献求助10
2分钟前
科研通AI2S应助Elena采纳,获得10
3分钟前
gaberella发布了新的文献求助10
3分钟前
3分钟前
3分钟前
orixero应助gaberella采纳,获得10
3分钟前
Rn完成签到 ,获得积分10
3分钟前
3分钟前
高分求助中
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
宽禁带半导体紫外光电探测器 388
Case Research: The Case Writing Process 300
Global Geological Record of Lake Basins 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3142672
求助须知:如何正确求助?哪些是违规求助? 2793553
关于积分的说明 7806860
捐赠科研通 2449789
什么是DOI,文献DOI怎么找? 1303455
科研通“疑难数据库(出版商)”最低求助积分说明 626950
版权声明 601314