Conditional GAN with an Attention-Based Generator and a 3D Discriminator for 3D Medical Image Generation

计算机科学 鉴别器 发电机(电路理论) 人工智能 集合(抽象数据类型) 过程(计算) 一致性(知识库) 计算 计算机视觉 图像(数学) 模式识别(心理学) 算法 电信 功率(物理) 物理 量子力学 探测器 程序设计语言 操作系统
作者
Euijin Jung,Miguel A. Cabra de Luna,Sang Hyun Park
出处
期刊:Lecture Notes in Computer Science 卷期号:: 318-328 被引量:28
标识
DOI:10.1007/978-3-030-87231-1_31
摘要

Conditional Generative Adversarial Networks (cGANs) are a set of methods able to synthesize images that match a given condition. However, existing models designed for natural images are impractical to generate high-quality 3D medical images due to enormous computation. To address this issue, most cGAN models used in the medical field process either 2D slices or small 3D crops and join them together in subsequent steps to reconstruct the full-size 3D image. However, these approaches often cause spatial inconsistencies in adjacent slices or crops, and the changes specified by the target condition may not consider the 3D image as a whole. To address these problems, we propose a novel cGAN that can synthesize high-quality 3D MR images at different stages of the Alzheimer's disease (AD). First, our method generates a sequence of 2D slices using an attention-based 2D generator with a disease condition for efficient transformations depending on brain regions. Then, consistency in 3D space is enforced by the use of a set of 2D and 3D discriminators. Moreover, we propose an adaptive identity loss based on the attention scores to properly transform features relevant to the target condition. Our experiments show that the proposed method can generate smooth and realistic 3D images at different stages of AD, and the image change with respect to the condition is better than the images generated by existing GAN-based methods.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Owen应助自觉从筠采纳,获得10
1秒前
桐桐应助qq大魔王采纳,获得10
1秒前
1秒前
2秒前
闲云野鹤完成签到,获得积分10
2秒前
2秒前
可爱的函函应助耶耶采纳,获得10
2秒前
3秒前
3秒前
喻箴发布了新的文献求助10
4秒前
4秒前
在水一方应助swmu_qiu采纳,获得10
4秒前
勤恳如凡发布了新的文献求助10
4秒前
高高问夏完成签到,获得积分10
4秒前
Sunhignway完成签到,获得积分10
6秒前
6秒前
王茜完成签到,获得积分20
6秒前
6秒前
生动的问柳应助Muxiaokun采纳,获得10
6秒前
思源应助T1aNer299采纳,获得10
6秒前
小星星发布了新的文献求助50
6秒前
6秒前
6秒前
7秒前
思源应助ForComposites采纳,获得10
7秒前
7秒前
Twonej应助zxp采纳,获得20
7秒前
小c发布了新的文献求助10
7秒前
vvA11发布了新的文献求助10
7秒前
善学以致用应助宋祝福采纳,获得10
8秒前
动人的乾完成签到 ,获得积分20
8秒前
8秒前
8秒前
Sunhignway发布了新的文献求助10
9秒前
Damy发布了新的文献求助10
9秒前
直率青寒完成签到,获得积分10
9秒前
小马甲应助xiaowang采纳,获得10
10秒前
科研通AI6应助panyubo采纳,获得10
10秒前
HY发布了新的文献求助10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
3rd Edition Group Dynamics in Exercise and Sport Psychology New Perspectives Edited By Mark R. Beauchamp, Mark Eys Copyright 2025 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
nephSAP® Nephrology Self-Assessment Program - Hypertension The American Society of Nephrology 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5624314
求助须知:如何正确求助?哪些是违规求助? 4710241
关于积分的说明 14949850
捐赠科研通 4778348
什么是DOI,文献DOI怎么找? 2553236
邀请新用户注册赠送积分活动 1515115
关于科研通互助平台的介绍 1475490