Conditional GAN with an Attention-Based Generator and a 3D Discriminator for 3D Medical Image Generation

计算机科学 鉴别器 发电机(电路理论) 人工智能 集合(抽象数据类型) 过程(计算) 一致性(知识库) 计算 计算机视觉 图像(数学) 模式识别(心理学) 算法 物理 操作系统 功率(物理) 探测器 程序设计语言 电信 量子力学
作者
Euijin Jung,Miguel A. Cabra de Luna,Sang Hyun Park
出处
期刊:Lecture Notes in Computer Science 卷期号:: 318-328 被引量:21
标识
DOI:10.1007/978-3-030-87231-1_31
摘要

Conditional Generative Adversarial Networks (cGANs) are a set of methods able to synthesize images that match a given condition. However, existing models designed for natural images are impractical to generate high-quality 3D medical images due to enormous computation. To address this issue, most cGAN models used in the medical field process either 2D slices or small 3D crops and join them together in subsequent steps to reconstruct the full-size 3D image. However, these approaches often cause spatial inconsistencies in adjacent slices or crops, and the changes specified by the target condition may not consider the 3D image as a whole. To address these problems, we propose a novel cGAN that can synthesize high-quality 3D MR images at different stages of the Alzheimer's disease (AD). First, our method generates a sequence of 2D slices using an attention-based 2D generator with a disease condition for efficient transformations depending on brain regions. Then, consistency in 3D space is enforced by the use of a set of 2D and 3D discriminators. Moreover, we propose an adaptive identity loss based on the attention scores to properly transform features relevant to the target condition. Our experiments show that the proposed method can generate smooth and realistic 3D images at different stages of AD, and the image change with respect to the condition is better than the images generated by existing GAN-based methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Tim完成签到,获得积分10
刚刚
orixero应助王金豪采纳,获得10
刚刚
orixero应助DD采纳,获得10
1秒前
1秒前
77发布了新的文献求助10
1秒前
2秒前
2秒前
3秒前
田様应助Lyra采纳,获得10
3秒前
HAO完成签到,获得积分10
3秒前
桐桐应助lruen7采纳,获得10
4秒前
Yang完成签到,获得积分20
5秒前
周可以完成签到,获得积分20
5秒前
橘子发布了新的文献求助10
5秒前
n1gern发布了新的文献求助20
6秒前
周可以发布了新的文献求助10
7秒前
Akim应助alisa采纳,获得10
8秒前
8秒前
8秒前
紧张的谷槐完成签到,获得积分10
10秒前
Max发布了新的文献求助30
10秒前
mhdu完成签到,获得积分10
11秒前
77完成签到,获得积分10
12秒前
12秒前
無心发布了新的文献求助10
12秒前
今后应助wayhome采纳,获得10
12秒前
13秒前
nnnnn完成签到,获得积分10
14秒前
董致宇完成签到,获得积分20
14秒前
zengyiyong完成签到,获得积分10
14秒前
朱大头完成签到,获得积分10
14秒前
14秒前
yydragen应助难过宫苴采纳,获得80
14秒前
汤振杰关注了科研通微信公众号
15秒前
科研通AI2S应助忧郁的听露采纳,获得10
15秒前
实验失败导一导完成签到,获得积分10
15秒前
宋畅完成签到 ,获得积分10
16秒前
zjz9928发布了新的文献求助10
16秒前
16秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Christian Women in Chinese Society: The Anglican Story 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3961351
求助须知:如何正确求助?哪些是违规求助? 3507711
关于积分的说明 11137438
捐赠科研通 3240131
什么是DOI,文献DOI怎么找? 1790762
邀请新用户注册赠送积分活动 872504
科研通“疑难数据库(出版商)”最低求助积分说明 803271