A novel ZrNbMoTaW refractory high-entropy alloy with in-situ forming heterogeneous structure

材料科学 合金 可塑性 微观结构 高熵合金 复合材料
作者
Tianxin Li,Wenna Jiao,Jin Miao,Yiping Lu,Enyu Guo,Tongmin Wang,Tingju Li,Peter K. Liaw
出处
期刊:Materials Science and Engineering A-structural Materials Properties Microstructure and Processing [Elsevier BV]
卷期号:827: 142061-142061 被引量:77
标识
DOI:10.1016/j.msea.2021.142061
摘要

NbMoTaW-based refractory high-entropy alloys (RHEAs) are now at the research frontier of advanced metallic materials due to outstanding mechanical properties at elevated temperatures. However, the poor plasticity of NbMoTaW-based RHEAs at room temperature hinders further development. The present work proposes a new strategy to tailor in-situ forming heterogeneous structures and improve the room-temperature mechanical properties of NbMoTaW-based RHEAs. A novel series of as-cast ZrxNbMoTaW (x = 0.1, 0.5, and 1, denoted by Zr0.1, Zr0.5, and Zr1, respectively) RHEAs was designed and prepared. The effect of Zr on the mechanical properties and microstructure evolution was investigated. The Zr1 alloy had a compressive yield strength of 1558 MPa and a strain of 15.8% at room temperature, superior to most reported NbMoTaW-based RHEAs. Surprisingly, the Zr1 alloy also showed an ultra-high strength at 1000 °C, which compressive yield strength was 555 MPa without fracture at the strain of 25%. Moreover, all ZrxNbMoTaW RHEAs were composed of two disordered body-centered cubic (BCC) phases. The nanoindentation results showed that the hardness of the dendrite exceeded that of the interdendritic region. Such heterogeneous structure of the Zr1 alloy had a hetero-deformation-induced enhancing effect on strength and plasticity. The heterogeneous structure was mainly triggered by increased mixing enthalpy, severe lattice distortion, and non-equilibrium solidification. The double cross slipping was the dominant deformation mechanism of the Zr1 alloy, which served as a new dislocation source besides the Frank-Read one. Accordingly, the dislocation multiplication was promoted, enhancing the strength and plasticity. This study successfully introduced a high-strength and high-plasticity NbMoTaW-based RHEA, gaining more insight into the alloy design strategies of RHEAs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
阿福发布了新的文献求助10
刚刚
起朱楼应助阿辉采纳,获得20
刚刚
灵巧一笑完成签到 ,获得积分10
2秒前
火星上友易完成签到,获得积分10
2秒前
2秒前
星星完成签到,获得积分10
3秒前
微笑向卉完成签到,获得积分20
3秒前
M20小陈完成签到,获得积分10
3秒前
xff完成签到 ,获得积分10
3秒前
4秒前
很傻的狗完成签到,获得积分10
4秒前
彭于晏应助俊逸的尔芙采纳,获得10
4秒前
Nara2021完成签到,获得积分10
4秒前
你好纠结伦完成签到,获得积分10
4秒前
fantasy完成签到 ,获得积分10
5秒前
冷静橘子完成签到,获得积分10
5秒前
俏皮的电脑完成签到,获得积分10
6秒前
Sunrise完成签到,获得积分10
6秒前
大月发布了新的文献求助10
6秒前
6秒前
东东东发布了新的文献求助20
6秒前
落月铭完成签到,获得积分10
7秒前
麦子完成签到 ,获得积分10
7秒前
Augusterny完成签到 ,获得积分10
8秒前
不安豁完成签到,获得积分10
8秒前
化学学渣完成签到,获得积分10
8秒前
小雨发布了新的文献求助10
8秒前
8秒前
9秒前
阿福完成签到,获得积分10
9秒前
9秒前
贝贝贝完成签到,获得积分10
10秒前
香蕉觅云应助liaomr采纳,获得10
10秒前
杀出个黎明举报qu求助涉嫌违规
11秒前
且听风吟完成签到 ,获得积分20
12秒前
12秒前
高兴的半仙完成签到,获得积分10
12秒前
12秒前
何公主完成签到,获得积分10
13秒前
歌德商务楼完成签到,获得积分10
13秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Residual Stress Measurement by X-Ray Diffraction, 2003 Edition HS-784/2003 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3950076
求助须知:如何正确求助?哪些是违规求助? 3495418
关于积分的说明 11077056
捐赠科研通 3225984
什么是DOI,文献DOI怎么找? 1783357
邀请新用户注册赠送积分活动 867663
科研通“疑难数据库(出版商)”最低求助积分说明 800855