已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Heterogeneous graph attention network based on meta-paths for lncRNA–disease association prediction

计算机科学 联想(心理学) 图形 理论计算机科学 人工智能 心理学 心理治疗师
作者
Xiaosa Zhao,Xiaowei Zhao,Minghao Yin
出处
期刊:Briefings in Bioinformatics [Oxford University Press]
卷期号:23 (1) 被引量:25
标识
DOI:10.1093/bib/bbab407
摘要

Discovering long noncoding RNA (lncRNA)-disease associations is a fundamental and critical part in understanding disease etiology and pathogenesis. However, only a few lncRNA-disease associations have been identified because of the time-consuming and expensive biological experiments. As a result, an efficient computational method is of great importance and urgently needed for identifying potential lncRNA-disease associations. With the ability of exploiting node features and relationships in network, graph-based learning models have been commonly utilized by these biomolecular association predictions. However, the capability of these methods in comprehensively fusing node features, heterogeneous topological structures and semantic information is distant from optimal or even satisfactory. Moreover, there are still limitations in modeling complex associations between lncRNAs and diseases.In this paper, we develop a novel heterogeneous graph attention network framework based on meta-paths for predicting lncRNA-disease associations, denoted as HGATLDA. At first, we conduct a heterogeneous network by incorporating lncRNA and disease feature structural graphs, and lncRNA-disease topological structural graph. Then, for the heterogeneous graph, we conduct multiple metapath-based subgraphs and then utilize graph attention network to learn node embeddings from neighbors of these homogeneous and heterogeneous subgraphs. Next, we implement attention mechanism to adaptively assign weights to multiple metapath-based subgraphs and get more semantic information. In addition, we combine neural inductive matrix completion to reconstruct lncRNA-disease associations, which is applied for capturing complicated associations between lncRNAs and diseases. Moreover, we incorporate cost-sensitive neural network into the loss function to tackle the commonly imbalance problem in lncRNA-disease association prediction. Finally, extensive experimental results demonstrate the effectiveness of our proposed framework.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
mashibeo完成签到,获得积分10
1秒前
伞兵龙完成签到,获得积分10
2秒前
2秒前
ccccc发布了新的文献求助10
3秒前
wq发布了新的文献求助10
4秒前
柏事发布了新的文献求助10
5秒前
Hana完成签到 ,获得积分10
6秒前
赘婿应助奋斗的绝悟采纳,获得10
8秒前
8秒前
13秒前
pocky完成签到,获得积分10
13秒前
13秒前
栎木枝发布了新的文献求助10
13秒前
乐乐应助优美的背包采纳,获得10
14秒前
14秒前
15秒前
leilei02完成签到,获得积分10
15秒前
Lucas应助柏事采纳,获得10
16秒前
哭泣的丝发布了新的文献求助10
16秒前
桐桐应助刘慧鑫采纳,获得10
17秒前
斯文败类应助科研雅雅子采纳,获得10
17秒前
lixuegang2023发布了新的文献求助10
18秒前
19秒前
19秒前
leilei02发布了新的文献求助10
19秒前
jie发布了新的文献求助10
19秒前
优美的背包完成签到,获得积分10
22秒前
wanci应助jie采纳,获得10
23秒前
婷婷发布了新的文献求助10
23秒前
Susan完成签到,获得积分10
23秒前
25秒前
25秒前
Jasper应助飞飞飞采纳,获得10
25秒前
26秒前
追寻的莺发布了新的文献求助10
26秒前
28秒前
苏苏发布了新的文献求助10
28秒前
29秒前
32秒前
刘慧鑫发布了新的文献求助10
32秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
CRC Handbook of Chemistry and Physics 104th edition 1000
Izeltabart tapatansine - AdisInsight 600
An International System for Human Cytogenomic Nomenclature (2024) 500
Introduction to Comparative Public Administration Administrative Systems and Reforms in Europe, Third Edition 3rd edition 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3766902
求助须知:如何正确求助?哪些是违规求助? 3311339
关于积分的说明 10158179
捐赠科研通 3026407
什么是DOI,文献DOI怎么找? 1661172
邀请新用户注册赠送积分活动 793895
科研通“疑难数据库(出版商)”最低求助积分说明 755846