Heterogeneous graph attention network based on meta-paths for lncRNA–disease association prediction

计算机科学 联想(心理学) 图形 理论计算机科学 人工智能 心理学 心理治疗师
作者
Xiaosa Zhao,Xiaowei Zhao,Minghao Yin
出处
期刊:Briefings in Bioinformatics [Oxford University Press]
卷期号:23 (1) 被引量:25
标识
DOI:10.1093/bib/bbab407
摘要

Discovering long noncoding RNA (lncRNA)-disease associations is a fundamental and critical part in understanding disease etiology and pathogenesis. However, only a few lncRNA-disease associations have been identified because of the time-consuming and expensive biological experiments. As a result, an efficient computational method is of great importance and urgently needed for identifying potential lncRNA-disease associations. With the ability of exploiting node features and relationships in network, graph-based learning models have been commonly utilized by these biomolecular association predictions. However, the capability of these methods in comprehensively fusing node features, heterogeneous topological structures and semantic information is distant from optimal or even satisfactory. Moreover, there are still limitations in modeling complex associations between lncRNAs and diseases.In this paper, we develop a novel heterogeneous graph attention network framework based on meta-paths for predicting lncRNA-disease associations, denoted as HGATLDA. At first, we conduct a heterogeneous network by incorporating lncRNA and disease feature structural graphs, and lncRNA-disease topological structural graph. Then, for the heterogeneous graph, we conduct multiple metapath-based subgraphs and then utilize graph attention network to learn node embeddings from neighbors of these homogeneous and heterogeneous subgraphs. Next, we implement attention mechanism to adaptively assign weights to multiple metapath-based subgraphs and get more semantic information. In addition, we combine neural inductive matrix completion to reconstruct lncRNA-disease associations, which is applied for capturing complicated associations between lncRNAs and diseases. Moreover, we incorporate cost-sensitive neural network into the loss function to tackle the commonly imbalance problem in lncRNA-disease association prediction. Finally, extensive experimental results demonstrate the effectiveness of our proposed framework.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
李健应助梦醒采纳,获得10
1秒前
刘三哥完成签到,获得积分10
1秒前
加菲宝宝发布了新的文献求助10
2秒前
聪明小于完成签到 ,获得积分10
2秒前
啊萌萌完成签到 ,获得积分10
3秒前
4秒前
打打完成签到,获得积分10
5秒前
Owen应助lwg采纳,获得30
6秒前
yar应助小李子采纳,获得10
9秒前
12秒前
13秒前
14秒前
15秒前
17秒前
18秒前
自然墨镜应助负责的方盒采纳,获得10
18秒前
ajun发布了新的文献求助10
19秒前
研友_VZG7GZ应助科研白小白采纳,获得10
19秒前
科研通AI2S应助天上人间采纳,获得10
20秒前
sissiarno完成签到,获得积分0
22秒前
watertearlxy完成签到 ,获得积分10
23秒前
yar给芝士分子的求助进行了留言
23秒前
23秒前
yongtao发布了新的文献求助10
23秒前
23秒前
浮三白完成签到,获得积分10
24秒前
guozizi完成签到,获得积分10
25秒前
KARRY应助科研通管家采纳,获得10
27秒前
小二郎应助科研通管家采纳,获得10
27秒前
NexusExplorer应助科研通管家采纳,获得10
27秒前
KARRY应助科研通管家采纳,获得10
27秒前
小二郎应助科研通管家采纳,获得10
27秒前
李爱国应助科研通管家采纳,获得10
27秒前
所所应助科研通管家采纳,获得10
27秒前
27秒前
充电宝应助科研通管家采纳,获得10
27秒前
田様应助科研通管家采纳,获得10
27秒前
zz应助科研通管家采纳,获得10
27秒前
劲秉应助科研通管家采纳,获得30
27秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
지식생태학: 생태학, 죽은 지식을 깨우다 600
海南省蛇咬伤流行病学特征与预后影响因素分析 500
Neuromuscular and Electrodiagnostic Medicine Board Review 500
ランス多機能化技術による溶鋼脱ガス処理の高効率化の研究 500
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3460894
求助须知:如何正确求助?哪些是违规求助? 3054804
关于积分的说明 9044831
捐赠科研通 2744673
什么是DOI,文献DOI怎么找? 1505633
科研通“疑难数据库(出版商)”最低求助积分说明 695745
邀请新用户注册赠送积分活动 695173