A feasibility study on deep learning‐based individualized 3D dose distribution prediction

放射治疗计划 剂量体积直方图 直方图 计算机科学 帕累托原理 帕累托最优 剂量学 分布(数学) 特征(语言学) 放射治疗 机器学习 数学 医学 模式识别(心理学) 医学物理学 核医学 人工智能 统计 多目标优化 放射科 数学分析 语言学 哲学 图像(数学)
作者
Jinghong Ma,Dan Nguyen,Ti Bai,Michael Folkerts,Xun Jia,Weiguo Lu,Linghong Zhou,Steve B Jiang
出处
期刊:Medical Physics [Wiley]
卷期号:48 (8): 4438-4447 被引量:9
标识
DOI:10.1002/mp.15025
摘要

Purpose: Radiation therapy treatment planning is a trial-and-error, often time-consuming process. An optimal dose distribution based on a specific anatomy can be predicted by pre-trained deep learning (DL) models. However, dose distributions are often optimized based on not only patient-specific anatomy but also physician preferred trade-offs between planning target volume (PTV) coverage and organ at risk (OAR) sparing. Therefore, it is desirable to allow physicians to fine-tune the dose distribution predicted based on patient anatomy. In this work, we developed a DL model to predict the individualized 3D dose distributions by using not only the anatomy but also the desired PTV/OAR trade-offs, as represented by a dose volume histogram (DVH), as inputs. Methods: The desired DVH, fine-tuned by physicians from the initially predicted DVH, is first projected onto the Pareto surface, then converted into a vector, and then concatenated with mask feature maps. The network output for training is the dose distribution corresponding to the Pareto optimal DVH. The training/validation datasets contain 77 prostate cancer patients, and the testing dataset has 20 patients. Results: The trained model can predict a 3D dose distribution that is approximately Pareto optimal. We calculated the difference between the predicted and the optimized dose distribution for the PTV and all OARs as a quantitative evaluation. The largest average error in mean dose was about 1.6% of the prescription dose, and the largest average error in the maximum dose was about 1.8%. Conclusions: In this feasibility study, we have developed a 3D U-Net model with the anatomy and desired DVH as inputs to predict an individualized 3D dose distribution. The predicted dose distributions can be used as references for dosimetrists and physicians to rapidly develop a clinically acceptable treatment plan.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
打打应助yn采纳,获得10
1秒前
1秒前
3秒前
归尘应助秋小阳桑采纳,获得10
3秒前
田様应助又又采纳,获得10
4秒前
遇上就这样吧应助GTY采纳,获得200
4秒前
4秒前
标致的问晴完成签到,获得积分10
5秒前
秋小阳桑完成签到 ,获得积分10
6秒前
tomorrow完成签到 ,获得积分10
7秒前
香蕉觅云应助Wille采纳,获得10
7秒前
桐桐应助归陌采纳,获得10
8秒前
理论家发布了新的文献求助10
8秒前
9秒前
王国向完成签到,获得积分10
9秒前
xxdingdang完成签到,获得积分10
9秒前
三文鱼发布了新的文献求助30
10秒前
善学以致用应助清茶采纳,获得10
10秒前
Orange应助诚心的松思采纳,获得10
11秒前
科研通AI6应助liang2508采纳,获得10
11秒前
你的左轮呢完成签到,获得积分10
12秒前
ltutui7完成签到,获得积分10
12秒前
薛子的科yan通完成签到,获得积分10
12秒前
13秒前
14秒前
CodeCraft应助Xinwen0322采纳,获得30
14秒前
15秒前
future完成签到 ,获得积分10
15秒前
英勇大门完成签到,获得积分10
16秒前
17秒前
嗯哼发布了新的文献求助10
18秒前
爱吃铁板牛肉的鱿鱼须完成签到,获得积分10
18秒前
19秒前
20秒前
21秒前
yyauthor完成签到,获得积分10
22秒前
鲤鱼砖头关注了科研通微信公众号
22秒前
又又发布了新的文献求助10
22秒前
xliiii发布了新的文献求助10
25秒前
25秒前
高分求助中
晶体学对称群—如何读懂和应用国际晶体学表 1500
Constitutional and Administrative Law 1000
Microbially Influenced Corrosion of Materials 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
The Experimental Biology of Bryophytes 500
Numerical controlled progressive forming as dieless forming 400
Rural Geographies People, Place and the Countryside 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5382258
求助须知:如何正确求助?哪些是违规求助? 4505455
关于积分的说明 14021836
捐赠科研通 4414879
什么是DOI,文献DOI怎么找? 2425203
邀请新用户注册赠送积分活动 1418008
关于科研通互助平台的介绍 1395964