重要提醒:2025.12.15 12:00-12:50期间发布的求助,下载出现了问题,现在已经修复完毕,请重新下载即可。如非文件错误,请不要进行驳回。

A feasibility study on deep learning‐based individualized 3D dose distribution prediction

放射治疗计划 剂量体积直方图 直方图 计算机科学 帕累托原理 帕累托最优 剂量学 分布(数学) 特征(语言学) 放射治疗 机器学习 数学 医学 模式识别(心理学) 医学物理学 核医学 人工智能 统计 多目标优化 放射科 图像(数学) 数学分析 哲学 语言学
作者
Jinghong Ma,Dan Nguyen,Ti Bai,Michael Folkerts,Xun Jia,Weiguo Lu,Linghong Zhou,Steve B Jiang
出处
期刊:Medical Physics [Wiley]
卷期号:48 (8): 4438-4447 被引量:9
标识
DOI:10.1002/mp.15025
摘要

Purpose: Radiation therapy treatment planning is a trial-and-error, often time-consuming process. An optimal dose distribution based on a specific anatomy can be predicted by pre-trained deep learning (DL) models. However, dose distributions are often optimized based on not only patient-specific anatomy but also physician preferred trade-offs between planning target volume (PTV) coverage and organ at risk (OAR) sparing. Therefore, it is desirable to allow physicians to fine-tune the dose distribution predicted based on patient anatomy. In this work, we developed a DL model to predict the individualized 3D dose distributions by using not only the anatomy but also the desired PTV/OAR trade-offs, as represented by a dose volume histogram (DVH), as inputs. Methods: The desired DVH, fine-tuned by physicians from the initially predicted DVH, is first projected onto the Pareto surface, then converted into a vector, and then concatenated with mask feature maps. The network output for training is the dose distribution corresponding to the Pareto optimal DVH. The training/validation datasets contain 77 prostate cancer patients, and the testing dataset has 20 patients. Results: The trained model can predict a 3D dose distribution that is approximately Pareto optimal. We calculated the difference between the predicted and the optimized dose distribution for the PTV and all OARs as a quantitative evaluation. The largest average error in mean dose was about 1.6% of the prescription dose, and the largest average error in the maximum dose was about 1.8%. Conclusions: In this feasibility study, we have developed a 3D U-Net model with the anatomy and desired DVH as inputs to predict an individualized 3D dose distribution. The predicted dose distributions can be used as references for dosimetrists and physicians to rapidly develop a clinically acceptable treatment plan.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Hello应助irisjlj采纳,获得10
刚刚
风雨琳琅完成签到,获得积分10
刚刚
刚刚
xu给xu的求助进行了留言
1秒前
美好行天发布了新的文献求助10
1秒前
1秒前
1秒前
多大发布了新的文献求助10
1秒前
chivu1980发布了新的文献求助20
2秒前
4秒前
4秒前
果果发布了新的文献求助10
5秒前
zy发布了新的文献求助10
5秒前
6秒前
7秒前
搜集达人应助lbx619采纳,获得10
7秒前
7秒前
小潘完成签到,获得积分10
8秒前
美好行天完成签到,获得积分10
8秒前
热心梦山完成签到,获得积分10
8秒前
8秒前
陈进完成签到,获得积分10
8秒前
narthon发布了新的文献求助10
9秒前
9秒前
9秒前
9秒前
Prandtl完成签到 ,获得积分10
10秒前
kleinnn完成签到,获得积分10
10秒前
coffe逗完成签到,获得积分10
10秒前
量子星尘发布了新的文献求助10
11秒前
AptRank发布了新的文献求助10
11秒前
着急的友绿完成签到,获得积分20
11秒前
fmm发布了新的文献求助10
11秒前
001399发布了新的文献求助10
11秒前
wwww发布了新的文献求助10
12秒前
小慧发布了新的文献求助10
12秒前
zzzz完成签到,获得积分10
12秒前
dew应助Lee采纳,获得10
12秒前
liyiming发布了新的文献求助10
12秒前
智智发布了新的文献求助10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Haematolymphoid Tumours (Part A and Part B, WHO Classification of Tumours, 5th Edition, Volume 11) 400
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
Unraveling the Causalities of Genetic Variations - Recent Advances in Cytogenetics 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5466072
求助须知:如何正确求助?哪些是违规求助? 4570135
关于积分的说明 14322892
捐赠科研通 4496608
什么是DOI,文献DOI怎么找? 2463448
邀请新用户注册赠送积分活动 1452319
关于科研通互助平台的介绍 1427516