A feasibility study on deep learning‐based individualized 3D dose distribution prediction

放射治疗计划 剂量体积直方图 直方图 计算机科学 帕累托原理 帕累托最优 剂量学 分布(数学) 特征(语言学) 放射治疗 机器学习 数学 医学 模式识别(心理学) 医学物理学 核医学 人工智能 统计 多目标优化 放射科 数学分析 语言学 哲学 图像(数学)
作者
Jinghong Ma,Dan Nguyen,Ti Bai,Michael Folkerts,Xun Jia,Weiguo Lu,Linghong Zhou,Steve B Jiang
出处
期刊:Medical Physics [Wiley]
卷期号:48 (8): 4438-4447 被引量:9
标识
DOI:10.1002/mp.15025
摘要

Purpose: Radiation therapy treatment planning is a trial-and-error, often time-consuming process. An optimal dose distribution based on a specific anatomy can be predicted by pre-trained deep learning (DL) models. However, dose distributions are often optimized based on not only patient-specific anatomy but also physician preferred trade-offs between planning target volume (PTV) coverage and organ at risk (OAR) sparing. Therefore, it is desirable to allow physicians to fine-tune the dose distribution predicted based on patient anatomy. In this work, we developed a DL model to predict the individualized 3D dose distributions by using not only the anatomy but also the desired PTV/OAR trade-offs, as represented by a dose volume histogram (DVH), as inputs. Methods: The desired DVH, fine-tuned by physicians from the initially predicted DVH, is first projected onto the Pareto surface, then converted into a vector, and then concatenated with mask feature maps. The network output for training is the dose distribution corresponding to the Pareto optimal DVH. The training/validation datasets contain 77 prostate cancer patients, and the testing dataset has 20 patients. Results: The trained model can predict a 3D dose distribution that is approximately Pareto optimal. We calculated the difference between the predicted and the optimized dose distribution for the PTV and all OARs as a quantitative evaluation. The largest average error in mean dose was about 1.6% of the prescription dose, and the largest average error in the maximum dose was about 1.8%. Conclusions: In this feasibility study, we have developed a 3D U-Net model with the anatomy and desired DVH as inputs to predict an individualized 3D dose distribution. The predicted dose distributions can be used as references for dosimetrists and physicians to rapidly develop a clinically acceptable treatment plan.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
脑洞疼应助一二采纳,获得10
刚刚
lili完成签到 ,获得积分10
1秒前
1秒前
Laura完成签到,获得积分10
1秒前
虚幻夜白完成签到,获得积分10
2秒前
蓝胖子发布了新的文献求助10
2秒前
3秒前
丸子完成签到 ,获得积分10
4秒前
77完成签到,获得积分10
4秒前
satohoang完成签到,获得积分10
4秒前
Ava应助杨一采纳,获得10
4秒前
陈亚茹发布了新的文献求助10
5秒前
充电宝应助暗夜星辰采纳,获得10
6秒前
123发布了新的文献求助10
6秒前
追寻冰淇淋应助朝花夕拾采纳,获得10
7秒前
7秒前
心理学狗都不学完成签到,获得积分10
7秒前
KRYSTAL完成签到,获得积分10
9秒前
10秒前
small完成签到,获得积分10
10秒前
10秒前
11秒前
Foremelon发布了新的文献求助20
12秒前
烟花应助舞星辰采纳,获得10
13秒前
Singularity应助Santiago采纳,获得10
13秒前
Keily完成签到,获得积分10
13秒前
温悦发布了新的文献求助30
13秒前
satohoang发布了新的文献求助10
14秒前
调皮的西装完成签到,获得积分10
14秒前
干净热狗发布了新的文献求助20
14秒前
16秒前
17秒前
17秒前
荏苒发布了新的文献求助20
17秒前
杰老爷完成签到,获得积分10
18秒前
棋士发布了新的文献求助10
19秒前
Rena完成签到,获得积分10
19秒前
20秒前
20秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3951800
求助须知:如何正确求助?哪些是违规求助? 3497233
关于积分的说明 11086336
捐赠科研通 3227767
什么是DOI,文献DOI怎么找? 1784520
邀请新用户注册赠送积分活动 868692
科研通“疑难数据库(出版商)”最低求助积分说明 801163