A feasibility study on deep learning‐based individualized 3D dose distribution prediction

放射治疗计划 剂量体积直方图 直方图 计算机科学 帕累托原理 帕累托最优 剂量学 分布(数学) 特征(语言学) 放射治疗 机器学习 数学 医学 模式识别(心理学) 医学物理学 核医学 人工智能 统计 多目标优化 放射科 图像(数学) 数学分析 哲学 语言学
作者
Jinghong Ma,Dan Nguyen,Ti Bai,Michael Folkerts,Xun Jia,Weiguo Lu,Linghong Zhou,Steve B Jiang
出处
期刊:Medical Physics [Wiley]
卷期号:48 (8): 4438-4447 被引量:9
标识
DOI:10.1002/mp.15025
摘要

Purpose: Radiation therapy treatment planning is a trial-and-error, often time-consuming process. An optimal dose distribution based on a specific anatomy can be predicted by pre-trained deep learning (DL) models. However, dose distributions are often optimized based on not only patient-specific anatomy but also physician preferred trade-offs between planning target volume (PTV) coverage and organ at risk (OAR) sparing. Therefore, it is desirable to allow physicians to fine-tune the dose distribution predicted based on patient anatomy. In this work, we developed a DL model to predict the individualized 3D dose distributions by using not only the anatomy but also the desired PTV/OAR trade-offs, as represented by a dose volume histogram (DVH), as inputs. Methods: The desired DVH, fine-tuned by physicians from the initially predicted DVH, is first projected onto the Pareto surface, then converted into a vector, and then concatenated with mask feature maps. The network output for training is the dose distribution corresponding to the Pareto optimal DVH. The training/validation datasets contain 77 prostate cancer patients, and the testing dataset has 20 patients. Results: The trained model can predict a 3D dose distribution that is approximately Pareto optimal. We calculated the difference between the predicted and the optimized dose distribution for the PTV and all OARs as a quantitative evaluation. The largest average error in mean dose was about 1.6% of the prescription dose, and the largest average error in the maximum dose was about 1.8%. Conclusions: In this feasibility study, we have developed a 3D U-Net model with the anatomy and desired DVH as inputs to predict an individualized 3D dose distribution. The predicted dose distributions can be used as references for dosimetrists and physicians to rapidly develop a clinically acceptable treatment plan.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
2秒前
NIUBEN发布了新的文献求助10
3秒前
赘婿应助活泼的活泼采纳,获得10
4秒前
谨慎秋寒发布了新的文献求助10
4秒前
凯凯完成签到,获得积分10
4秒前
凉兮发布了新的文献求助10
4秒前
iNk应助GSQ采纳,获得20
5秒前
5秒前
一一应助简艾采纳,获得10
5秒前
123完成签到,获得积分10
5秒前
5秒前
balabala发布了新的文献求助10
5秒前
6秒前
小满完成签到,获得积分10
6秒前
7秒前
ding应助shea采纳,获得10
7秒前
TT工作好认真完成签到 ,获得积分10
7秒前
下路润发布了新的文献求助10
7秒前
7秒前
momo完成签到,获得积分10
7秒前
Ava应助紧张的世德采纳,获得10
7秒前
莫愁完成签到,获得积分10
8秒前
在水一方应助山茶采纳,获得10
8秒前
小饼干完成签到,获得积分10
8秒前
芽芽配茄子完成签到,获得积分10
8秒前
凯凯发布了新的文献求助10
8秒前
科研通AI5应助Witness采纳,获得30
8秒前
9秒前
9秒前
XH完成签到,获得积分10
9秒前
Jerry完成签到,获得积分10
9秒前
9秒前
静静完成签到,获得积分10
10秒前
CipherSage应助冰柠檬采纳,获得10
10秒前
无敌鱼发布了新的文献求助10
10秒前
xiaoyuzhou发布了新的文献求助10
10秒前
完美世界应助asilamu采纳,获得10
11秒前
11秒前
gfqdts66发布了新的文献求助10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
Determination of the boron concentration in diamond using optical spectroscopy 600
Founding Fathers The Shaping of America 500
Research Handbook on Law and Political Economy Second Edition 398
March's Advanced Organic Chemistry: Reactions, Mechanisms, and Structure 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4559024
求助须知:如何正确求助?哪些是违规求助? 3985748
关于积分的说明 12340214
捐赠科研通 3656286
什么是DOI,文献DOI怎么找? 2014287
邀请新用户注册赠送积分活动 1049131
科研通“疑难数据库(出版商)”最低求助积分说明 937477