A feasibility study on deep learning‐based individualized 3D dose distribution prediction

放射治疗计划 剂量体积直方图 直方图 计算机科学 帕累托原理 帕累托最优 剂量学 分布(数学) 特征(语言学) 放射治疗 机器学习 数学 医学 模式识别(心理学) 医学物理学 核医学 人工智能 统计 多目标优化 放射科 数学分析 语言学 哲学 图像(数学)
作者
Jinghong Ma,Dan Nguyen,Ti Bai,Michael Folkerts,Xun Jia,Weiguo Lu,Linghong Zhou,Steve B Jiang
出处
期刊:Medical Physics [Wiley]
卷期号:48 (8): 4438-4447 被引量:9
标识
DOI:10.1002/mp.15025
摘要

Purpose: Radiation therapy treatment planning is a trial-and-error, often time-consuming process. An optimal dose distribution based on a specific anatomy can be predicted by pre-trained deep learning (DL) models. However, dose distributions are often optimized based on not only patient-specific anatomy but also physician preferred trade-offs between planning target volume (PTV) coverage and organ at risk (OAR) sparing. Therefore, it is desirable to allow physicians to fine-tune the dose distribution predicted based on patient anatomy. In this work, we developed a DL model to predict the individualized 3D dose distributions by using not only the anatomy but also the desired PTV/OAR trade-offs, as represented by a dose volume histogram (DVH), as inputs. Methods: The desired DVH, fine-tuned by physicians from the initially predicted DVH, is first projected onto the Pareto surface, then converted into a vector, and then concatenated with mask feature maps. The network output for training is the dose distribution corresponding to the Pareto optimal DVH. The training/validation datasets contain 77 prostate cancer patients, and the testing dataset has 20 patients. Results: The trained model can predict a 3D dose distribution that is approximately Pareto optimal. We calculated the difference between the predicted and the optimized dose distribution for the PTV and all OARs as a quantitative evaluation. The largest average error in mean dose was about 1.6% of the prescription dose, and the largest average error in the maximum dose was about 1.8%. Conclusions: In this feasibility study, we have developed a 3D U-Net model with the anatomy and desired DVH as inputs to predict an individualized 3D dose distribution. The predicted dose distributions can be used as references for dosimetrists and physicians to rapidly develop a clinically acceptable treatment plan.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
S.完成签到 ,获得积分10
1秒前
LXF发布了新的文献求助10
2秒前
向阳花完成签到,获得积分10
2秒前
受伤破茧完成签到,获得积分10
2秒前
ygg完成签到,获得积分10
3秒前
Hum0ro98完成签到,获得积分10
3秒前
4秒前
萌宝发布了新的文献求助10
4秒前
5秒前
wang完成签到,获得积分10
6秒前
7秒前
欣慰外绣发布了新的文献求助10
7秒前
蔚岚影落完成签到,获得积分10
8秒前
song发布了新的文献求助10
8秒前
龙卷风完成签到,获得积分10
8秒前
果果完成签到,获得积分10
9秒前
Liar应助彩色的湘采纳,获得10
9秒前
9秒前
高大的易蓉完成签到,获得积分10
10秒前
Lucas应助戴先森采纳,获得10
10秒前
ldx完成签到,获得积分10
11秒前
科研通AI2S应助luckweb采纳,获得10
11秒前
花火完成签到,获得积分10
13秒前
123完成签到,获得积分20
13秒前
想做哥哥的伞钯完成签到,获得积分10
13秒前
13秒前
细心觅风完成签到,获得积分10
13秒前
橙子完成签到 ,获得积分10
13秒前
tianqing完成签到,获得积分10
15秒前
bai完成签到,获得积分10
15秒前
16秒前
Ava应助活泼雁菡采纳,获得10
17秒前
等待的谷波完成签到 ,获得积分10
17秒前
yongkun完成签到,获得积分20
17秒前
snowball完成签到,获得积分10
17秒前
我是魔王完成签到,获得积分10
18秒前
woshiwuziq发布了新的文献求助30
18秒前
戴先森发布了新的文献求助10
18秒前
fuguier发布了新的文献求助10
19秒前
19秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
A Dissection Guide & Atlas to the Rabbit 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3134120
求助须知:如何正确求助?哪些是违规求助? 2784938
关于积分的说明 7769524
捐赠科研通 2440503
什么是DOI,文献DOI怎么找? 1297428
科研通“疑难数据库(出版商)”最低求助积分说明 624961
版权声明 600792