Is Hidden Safe? Location Protection against Machine-Learning Prediction Attacks in Social Networks

正确性 计算机科学 私人信息检索 估计员 计算机安全 构造(python库) 机器学习 人工智能 风险分析(工程) 互联网隐私 业务 算法 数学 统计 程序设计语言
作者
Xiao Han,Leye Wang,Weiguo Fan
出处
期刊:Management Information Systems Quarterly [MIS Quarterly]
卷期号:45 (2): 821-858 被引量:7
标识
DOI:10.25300/misq/2021/16266
摘要

User privacy protection is a vital issue of concern for online social networks (OSNs). Even though users often intentionally hide their private information in OSNs, since adversaries may conduct prediction attacks to predict hidden information using advanced machine learning techniques, private information that users intend to hide may still be at risk of being exposed. Taking the current city listed on Facebook profiles as a case, we propose a solution that estimates and manages the exposure risk of users’ hidden information. First, we simulate an aggressive prediction attack using advanced state-of-the-art machine learning algorithms by proposing a new current city prediction framework that integrates location indications based on various types of information exposed by users, including demographic attributes, behaviors, and relationships. Second, we study prediction attack results to model patterns of prediction correctness (as correct predictions lead to information exposures) and construct an exposure risk estimator. The proposed exposure risk estimator has the ability not only to notify users of exposure risks related to their hidden current city but can also help users mitigate exposure risks by overhauling and selecting countermeasures. Moreover, our exposure risk estimator can improve the privacy management of OSNs by facilitating empirical studies on the exposure risks of OSN users as a group. Taking the current city as a case, this work offers insight on how to protect other types of private information against machine-learning prediction attacks and reveals several important implications for both practice management and future research.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
脑洞疼应助cometx采纳,获得10
刚刚
科研通AI2S应助lvsehx采纳,获得10
1秒前
2秒前
Orange应助11采纳,获得10
2秒前
橘子发布了新的文献求助10
3秒前
vic303发布了新的文献求助10
3秒前
在水一方应助ylf采纳,获得10
3秒前
kangkang发布了新的文献求助10
3秒前
YuanbinMao应助诚心的凌丝采纳,获得20
3秒前
大个应助然大宝采纳,获得10
4秒前
冷漠的布丁完成签到,获得积分10
4秒前
科研通AI2S应助Wang采纳,获得10
4秒前
共享精神应助青山道友采纳,获得30
6秒前
胡罗贝小兔完成签到,获得积分10
7秒前
学术LJ完成签到,获得积分10
7秒前
天天快乐应助研友_8R3XdL采纳,获得30
7秒前
lvsehx完成签到,获得积分10
8秒前
科研吗喽发布了新的文献求助10
8秒前
天天完成签到,获得积分10
8秒前
9秒前
xc完成签到,获得积分10
9秒前
李锐完成签到,获得积分20
10秒前
KAI完成签到,获得积分20
10秒前
10秒前
桃宝儿完成签到,获得积分10
11秒前
11秒前
现代的卿完成签到 ,获得积分10
11秒前
qianqian完成签到,获得积分20
11秒前
研友_8RlG1n完成签到,获得积分10
11秒前
小李发布了新的文献求助10
12秒前
kangkang完成签到,获得积分10
13秒前
626完成签到,获得积分10
13秒前
13秒前
14秒前
无聊的无施完成签到,获得积分10
14秒前
14秒前
静然发布了新的文献求助10
16秒前
17秒前
lll发布了新的文献求助10
17秒前
高分求助中
歯科矯正学 第7版(或第5版) 1004
Semiconductor Process Reliability in Practice 1000
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
GROUP-THEORY AND POLARIZATION ALGEBRA 500
Mesopotamian divination texts : conversing with the gods : sources from the first millennium BCE 500
Days of Transition. The Parsi Death Rituals(2011) 500
The Heath Anthology of American Literature: Early Nineteenth Century 1800 - 1865 Vol. B 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3233742
求助须知:如何正确求助?哪些是违规求助? 2880231
关于积分的说明 8214458
捐赠科研通 2547669
什么是DOI,文献DOI怎么找? 1377140
科研通“疑难数据库(出版商)”最低求助积分说明 647736
邀请新用户注册赠送积分活动 623187