Smart “Predict, then Optimize”

计算机科学 数学优化 最优化问题 功能(生物学) 算法 数学 进化生物学 生物
作者
Adam N. Elmachtoub,Paul Grigas
出处
期刊:Management Science [Institute for Operations Research and the Management Sciences]
卷期号:68 (1): 9-26 被引量:371
标识
DOI:10.1287/mnsc.2020.3922
摘要

Many real-world analytics problems involve two significant challenges: prediction and optimization. Because of the typically complex nature of each challenge, the standard paradigm is predict-then-optimize. By and large, machine learning tools are intended to minimize prediction error and do not account for how the predictions will be used in the downstream optimization problem. In contrast, we propose a new and very general framework, called Smart “Predict, then Optimize” (SPO), which directly leverages the optimization problem structure—that is, its objective and constraints—for designing better prediction models. A key component of our framework is the SPO loss function, which measures the decision error induced by a prediction. Training a prediction model with respect to the SPO loss is computationally challenging, and, thus, we derive, using duality theory, a convex surrogate loss function, which we call the SPO+ loss. Most importantly, we prove that the SPO+ loss is statistically consistent with respect to the SPO loss under mild conditions. Our SPO+ loss function can tractably handle any polyhedral, convex, or even mixed-integer optimization problem with a linear objective. Numerical experiments on shortest-path and portfolio-optimization problems show that the SPO framework can lead to significant improvement under the predict-then-optimize paradigm, in particular, when the prediction model being trained is misspecified. We find that linear models trained using SPO+ loss tend to dominate random-forest algorithms, even when the ground truth is highly nonlinear. This paper was accepted by Yinyu Ye, optimization. Supplemental Material: Data and the online appendix are available at https://doi.org/10.1287/mnsc.2020.3922
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
英姑应助xhy采纳,获得10
刚刚
刚刚
刚刚
1秒前
1秒前
2秒前
2秒前
郑开司09发布了新的文献求助10
2秒前
黄紫红蓝发布了新的文献求助10
3秒前
3秒前
3秒前
3秒前
4秒前
camera完成签到 ,获得积分20
4秒前
zino发布了新的文献求助10
4秒前
reck发布了新的文献求助10
5秒前
5秒前
苹果追命完成签到,获得积分20
6秒前
6秒前
烟花应助8564523采纳,获得10
6秒前
lkl完成签到 ,获得积分10
6秒前
01259发布了新的文献求助10
7秒前
7秒前
金子完成签到,获得积分10
7秒前
阳光下的星星完成签到,获得积分10
7秒前
顾己发布了新的文献求助10
7秒前
搁浅发布了新的文献求助10
7秒前
大桶水果茶完成签到,获得积分10
7秒前
闪闪飞机发布了新的文献求助10
8秒前
打打应助蔡蔡不菜菜采纳,获得10
8秒前
艺玲发布了新的文献求助10
8秒前
9秒前
坚果发布了新的文献求助10
9秒前
宋嬴一发布了新的文献求助10
9秒前
sweetbearm应助丞诺采纳,获得10
9秒前
9秒前
情怀应助缥缈的碧萱采纳,获得10
9秒前
一株多肉完成签到,获得积分10
10秒前
柯柯完成签到,获得积分10
10秒前
是赤赤呀完成签到,获得积分10
10秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527304
求助须知:如何正确求助?哪些是违规求助? 3107454
关于积分的说明 9285518
捐赠科研通 2805269
什么是DOI,文献DOI怎么找? 1539827
邀请新用户注册赠送积分活动 716708
科研通“疑难数据库(出版商)”最低求助积分说明 709672