Smart “Predict, then Optimize”

计算机科学 数学优化 最优化问题 功能(生物学) 算法 数学 进化生物学 生物
作者
Adam N. Elmachtoub,Paul Grigas
出处
期刊:Management Science [Institute for Operations Research and the Management Sciences]
卷期号:68 (1): 9-26 被引量:391
标识
DOI:10.1287/mnsc.2020.3922
摘要

Many real-world analytics problems involve two significant challenges: prediction and optimization. Because of the typically complex nature of each challenge, the standard paradigm is predict-then-optimize. By and large, machine learning tools are intended to minimize prediction error and do not account for how the predictions will be used in the downstream optimization problem. In contrast, we propose a new and very general framework, called Smart “Predict, then Optimize” (SPO), which directly leverages the optimization problem structure—that is, its objective and constraints—for designing better prediction models. A key component of our framework is the SPO loss function, which measures the decision error induced by a prediction. Training a prediction model with respect to the SPO loss is computationally challenging, and, thus, we derive, using duality theory, a convex surrogate loss function, which we call the SPO+ loss. Most importantly, we prove that the SPO+ loss is statistically consistent with respect to the SPO loss under mild conditions. Our SPO+ loss function can tractably handle any polyhedral, convex, or even mixed-integer optimization problem with a linear objective. Numerical experiments on shortest-path and portfolio-optimization problems show that the SPO framework can lead to significant improvement under the predict-then-optimize paradigm, in particular, when the prediction model being trained is misspecified. We find that linear models trained using SPO+ loss tend to dominate random-forest algorithms, even when the ground truth is highly nonlinear. This paper was accepted by Yinyu Ye, optimization. Supplemental Material: Data and the online appendix are available at https://doi.org/10.1287/mnsc.2020.3922
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Cupid完成签到,获得积分10
1秒前
1秒前
1秒前
lalala发布了新的文献求助10
2秒前
魔幻勒完成签到 ,获得积分10
2秒前
史小霜发布了新的文献求助10
2秒前
甜崽发布了新的文献求助10
2秒前
愉快寒香发布了新的文献求助10
2秒前
3秒前
zhang完成签到,获得积分10
3秒前
果实发布了新的文献求助10
3秒前
辽阳太子完成签到 ,获得积分10
3秒前
李健的粉丝团团长应助jack采纳,获得10
4秒前
zzzzzzj发布了新的文献求助10
4秒前
5秒前
领导范儿应助白桃采纳,获得10
5秒前
铠甲勇士完成签到,获得积分10
5秒前
卡酷发布了新的文献求助10
5秒前
易吴鱼完成签到 ,获得积分10
6秒前
7秒前
梁婷完成签到,获得积分20
7秒前
黑桃完成签到,获得积分10
9秒前
10秒前
梁婷发布了新的文献求助10
10秒前
大个应助llllx采纳,获得10
11秒前
阳光灿烂完成签到,获得积分10
11秒前
过于傻逼发布了新的文献求助10
12秒前
13秒前
花花哈完成签到,获得积分10
13秒前
李健应助梁婷采纳,获得10
14秒前
15秒前
16秒前
swiftie完成签到,获得积分10
16秒前
花小生完成签到 ,获得积分10
16秒前
小太阳完成签到,获得积分10
17秒前
17秒前
卡酷完成签到,获得积分10
18秒前
白桃发布了新的文献求助10
19秒前
啦啦啦啦啦啦完成签到,获得积分10
19秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Christian Women in Chinese Society: The Anglican Story 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3960985
求助须知:如何正确求助?哪些是违规求助? 3507215
关于积分的说明 11134512
捐赠科研通 3239640
什么是DOI,文献DOI怎么找? 1790273
邀请新用户注册赠送积分活动 872328
科研通“疑难数据库(出版商)”最低求助积分说明 803149