VeriML: Enabling Integrity Assurances and Fair Payments for Machine Learning as a Service

计算机科学 正确性 付款 外包 服务(商务) 服务器 概率逻辑 服务提供商 计算机安全 工作量 任务(项目管理) 人工智能 机器学习 计算机网络 算法 万维网 操作系统 经济 经济 管理 法学 政治学
作者
Lingchen Zhao,Qian Wang,Cong Wang,Qi Li,Chao Shen,Bo Feng
出处
期刊:IEEE Transactions on Parallel and Distributed Systems [Institute of Electrical and Electronics Engineers]
卷期号:32 (10): 2524-2540 被引量:44
标识
DOI:10.1109/tpds.2021.3068195
摘要

Machine Learning as a Service (MLaaS) allows clients with limited resources to outsource their expensive ML tasks to powerful servers. Despite the huge benefits, current MLaaS solutions still lack strong assurances on: 1) service correctness (i.e., whether the MLaaS works as expected); 2) trustworthy accounting (i.e., whether the bill for the MLaaS resource consumption is correctly accounted); 3) fair payment (i.e., whether a client gets the entire MLaaS result before making the payment). Without these assurances, unfaithful service providers can return improperly-executed ML task results or partially-trained ML models while asking for over-claimed rewards. Moreover, it is hard to argue for wide adoption of MLaaS to both the client and the service provider, especially in the open market without a trusted third party. In this article, we present VeriML, a novel and efficient framework to bring integrity assurances and fair payments to MLaaS. With VeriML, clients can be assured that ML tasks are correctly executed on an untrusted server, and the resource consumption claimed by the service provider equals to the actual workload. We strategically use succinct non-interactive arguments of knowledge (SNARK) on randomly-selected iterations during the ML training phase for efficiency with tunable probabilistic assurance. We also develop multiple ML-specific optimizations to the arithmetic circuit required by SNARK. Our system implements six common algorithms: linear regression, logistic regression, neural network, support vector machine, K-means and decision tree. The experimental results have validated the practical performance of VeriML.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
小小牛完成签到 ,获得积分10
2秒前
安德鲁森完成签到 ,获得积分10
2秒前
3秒前
噗噗完成签到,获得积分10
3秒前
3秒前
史塔克完成签到,获得积分20
4秒前
所所应助如意的之玉采纳,获得10
4秒前
挖菜发布了新的文献求助10
4秒前
Lucas应助彩色映雁采纳,获得10
5秒前
5秒前
麻辣烫完成签到 ,获得积分10
6秒前
ysl完成签到,获得积分10
7秒前
9秒前
10秒前
10秒前
daxia9527应助独特的叫兽采纳,获得30
11秒前
Tony12发布了新的文献求助20
11秒前
13秒前
FashionBoy应助西北望采纳,获得10
13秒前
16秒前
17秒前
李健应助TIGun采纳,获得10
18秒前
18秒前
wzy5508发布了新的文献求助10
20秒前
20秒前
21秒前
丰知然应助科研通管家采纳,获得10
21秒前
丰知然应助科研通管家采纳,获得10
21秒前
丰知然应助科研通管家采纳,获得10
21秒前
彩色映雁发布了新的文献求助10
21秒前
丰知然应助科研通管家采纳,获得10
21秒前
丰知然应助科研通管家采纳,获得10
21秒前
CipherSage应助科研通管家采纳,获得10
21秒前
急急国王应助科研通管家采纳,获得10
21秒前
我是老大应助科研通管家采纳,获得10
21秒前
乐乐应助科研通管家采纳,获得10
21秒前
Yiy应助科研通管家采纳,获得10
21秒前
丰知然应助科研通管家采纳,获得10
21秒前
我是老大应助科研通管家采纳,获得10
21秒前
高分求助中
中央政治學校研究部新政治月刊社出版之《新政治》(第二卷第四期) 1000
Hopemont Capacity Assessment Interview manual and scoring guide 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
Mantids of the euro-mediterranean area 600
【港理工学位论文】Telling the tale of health crisis response on social media : an exploration of narrative plot and commenters' co-narration 500
Mantodea of the World: Species Catalog Andrew M 500
Insecta 2. Blattodea, Mantodea, Isoptera, Grylloblattodea, Phasmatodea, Dermaptera and Embioptera 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 内科学 物理 纳米技术 计算机科学 基因 遗传学 化学工程 复合材料 免疫学 物理化学 细胞生物学 催化作用 病理
热门帖子
关注 科研通微信公众号,转发送积分 3433815
求助须知:如何正确求助?哪些是违规求助? 3030979
关于积分的说明 8940427
捐赠科研通 2719043
什么是DOI,文献DOI怎么找? 1491619
科研通“疑难数据库(出版商)”最低求助积分说明 689331
邀请新用户注册赠送积分活动 685455