Investigating the period of switching roles in pair programming in a primary school

徽标(编程语言) 计算思维 背景(考古学) 计算机科学 创造力 数学教育 程序设计范式 程序设计语言 人工智能 心理学 社会心理学 生物 古生物学
作者
Baichang Zhong,Qiyun Wang,Jie Chen,Li Yi
出处
期刊:Educational Technology & Society [Ankara University]
卷期号:20 (3): 220-233 被引量:25
摘要

Introduction Programming for K-12 can be traced back to the 1960s when Logo programming was firstly introduced as an intellectual thinking educational tool for teaching mathematics (Feurzeig, Papert, & Lawler, 2011). After Logo, the use of programming to teach thinking skills in K-12 was scarcely reported. In recent years, however, there has been renewed interest in introducing programming to K-12 students (Grover & Pea, 2013; Kafai & Burke, 2013). This was aroused by the availability of easy-to-use visual programming languages such as Scratch, Stagecast Creator and Alice, etc. During programming, students are exposed to computational thinking (CT), a term popularized by Wing (2006). CT involves solving problems, designing systems, and understanding human behaviors, by drawing on the concepts fundamental to computer science (Wing, 2006). Many researchers argue that CT is a fundamental skill for almost everyone in a digital age, not just for computer scientists (National Research Council, 2010; Wing, 2006). More importantly, CT is in line with many 21st century competencies such as creativity, critical thinking, and problem solving (Binkley et al., 2012). Thus, it is not surprising that many educators claim that programming provides an important context and a set of opportunities for K-12 students to develop CT (Kafai & Burke, 2013; Lye & Koh, 2014; Resnick et al., 2009). This revived interest in programming in K-12 settings suggests a need to consider how CT can be fostered effectively via programming. Studies have showed that students taught with pair programming (PP) often perform better in CT than with solo programming (Lye & Koh, 2014; Werner & Denning, 2009; Werner, Denner, Campe, & Kawamoto, 2012). PP is a practice in which two people work side-by-side at one computer, and closely collaborate to create a program. One is normally called the driver, who is responsible for using a computer to key in codes. The other is usually known as the or observer/reviewer, who takes the responsibility for observing the driver's work and providing support by pointing errors or offering ideas in solving a problem (Williams & Kessler, 2000). In view of the usefulness of fostering CT, we have used PP as a pedagogical teaching technique in a primary school for two years. Meanwhile, we have also identified some issues with putting PP into practice. One main issue is about how often the roles (driver and navigator) in a pair should switch from one to the other, since it is very important to switch roles periodically between the driver and the navigator (Williams & Kessler, 2002). In other words, what period should we choose to switch the students' roles in PP practice? Literature review Many studies have showed that PP has obvious benefits over solo programming, including PP can (1) significantly improve individual programming skills and promote productivity or program quality (Braught, Eby, & Wahls, 2008; Cliburn, 2003; Hannay, Dyba, Arisholm, & Sjoberg, 2009; Williams & Kessler, 2000); (2) reduce frustration experienced by novice programmers; increase student satisfaction, enjoyment; and foster positive attitudes in programming (Bishop-Clark, Courte, Evans, & Howard, 2006; DeClue, 2003; LeJeune, 2006; McDowell, Werner, Bullock, & Fernald, 2002; Preston, 2005; Werner, Bullock, & Fernald, 2006); (3) increase retention of students (especially for female students) in computer science courses (Li, Plaue, & Kraemer, 2013; McDowell et al., 2006); and (4) better prepare students to work as a team (Cliburn, 2003; Williams & Kessler, 2000). However, the above benefits do not occur automatically. Some experiments and empirical studies have reported inconclusive or contradictory results (Balijepally, Mahapatra, Nerur, & Price, 2009; Sfetsos, Stamelos, Angelis, & Deligiannis, 2009). This accentuates the need for further studies. …
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lala发布了新的文献求助10
1秒前
hhhh发布了新的文献求助10
1秒前
ggg完成签到,获得积分10
2秒前
3秒前
王二发布了新的文献求助10
3秒前
丰富的雅寒完成签到,获得积分10
4秒前
5秒前
oneday发布了新的文献求助10
5秒前
栗惠完成签到 ,获得积分20
5秒前
李健应助甜甜的亦寒采纳,获得10
5秒前
大个应助彭凯采纳,获得10
7秒前
充电宝应助weimz采纳,获得10
7秒前
花莫凋零发布了新的文献求助10
8秒前
zebra8848完成签到,获得积分20
8秒前
双夏完成签到 ,获得积分10
10秒前
hoho发布了新的文献求助10
10秒前
畅快菠萝完成签到,获得积分10
12秒前
13秒前
123应助啊哈哈哈哈采纳,获得10
13秒前
13秒前
lala完成签到,获得积分20
14秒前
14秒前
调研昵称发布了新的文献求助20
15秒前
万丈烈阳完成签到,获得积分10
16秒前
18秒前
ai zs发布了新的文献求助10
18秒前
NexusExplorer应助激昂的飞松采纳,获得10
19秒前
19秒前
修梨发布了新的文献求助10
19秒前
21秒前
CipherSage应助Echo采纳,获得30
21秒前
22秒前
yyyyyy完成签到,获得积分10
22秒前
22秒前
ningqi完成签到,获得积分10
22秒前
ww007完成签到,获得积分10
23秒前
情怀应助万丈烈阳采纳,获得10
24秒前
赘婿应助现代的小馒头采纳,获得10
25秒前
25秒前
小狐狸发布了新的文献求助10
25秒前
高分求助中
Lire en communiste 1000
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 800
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 700
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
Becoming: An Introduction to Jung's Concept of Individuation 600
Die Gottesanbeterin: Mantis religiosa: 656 500
Communist propaganda: a fact book, 1957-1958 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3170410
求助须知:如何正确求助?哪些是违规求助? 2821594
关于积分的说明 7935169
捐赠科研通 2481933
什么是DOI,文献DOI怎么找? 1322166
科研通“疑难数据库(出版商)”最低求助积分说明 633525
版权声明 602608