已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

A New Deep Transfer Learning Based on Sparse Auto-Encoder for Fault Diagnosis

人工智能 计算机科学 深度学习 学习迁移 自编码 原始数据 断层(地质) 人工神经网络 滤波器(信号处理) 机器学习 代表(政治) 编码器 模式识别(心理学) 试验数据 数据挖掘 地质学 计算机视觉 地震学 操作系统 政治 政治学 程序设计语言 法学
作者
Long Wen,Liang Gao,Xinyu Li
出处
期刊:IEEE transactions on systems, man, and cybernetics [Institute of Electrical and Electronics Engineers]
卷期号:49 (1): 136-144 被引量:932
标识
DOI:10.1109/tsmc.2017.2754287
摘要

Fault diagnosis plays an important role in modern industry. With the development of smart manufacturing, the data-driven fault diagnosis becomes hot. However, traditional methods have two shortcomings: 1) their performances depend on the good design of handcrafted features of data, but it is difficult to predesign these features and 2) they work well under a general assumption: the training data and testing data should be drawn from the same distribution, but this assumption fails in many engineering applications. Since deep learning (DL) can extract the hierarchical representation features of raw data, and transfer learning provides a good way to perform a learning task on the different but related distribution datasets, deep transfer learning (DTL) has been developed for fault diagnosis. In this paper, a new DTL method is proposed. It uses a three-layer sparse auto-encoder to extract the features of raw data, and applies the maximum mean discrepancy term to minimizing the discrepancy penalty between the features from training data and testing data. The proposed DTL is tested on the famous motor bearing dataset from the Case Western Reserve University. The results show a good improvement, and DTL achieves higher prediction accuracies on most experiments than DL. The prediction accuracy of DTL, which is as high as 99.82%, is better than the results of other algorithms, including deep belief network, sparse filter, artificial neural network, support vector machine and some other traditional methods. What is more, two additional analytical experiments are conducted. The results show that a good unlabeled third dataset may be helpful to DTL, and a good linear relationship between the final prediction accuracies and their standard deviations have been observed.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
虚拟的元风完成签到 ,获得积分10
1秒前
2秒前
yf发布了新的文献求助10
3秒前
6秒前
8秒前
古风完成签到 ,获得积分10
8秒前
萧瑟处完成签到,获得积分10
9秒前
白华苍松发布了新的文献求助10
11秒前
loewy完成签到,获得积分10
16秒前
害羞大碗完成签到,获得积分20
23秒前
萝卜卷心菜完成签到 ,获得积分10
23秒前
27秒前
28秒前
EIEI完成签到,获得积分10
29秒前
33秒前
35秒前
美味的屑狐狸完成签到 ,获得积分10
36秒前
zxx发布了新的文献求助10
38秒前
bkagyin应助科研通管家采纳,获得10
39秒前
科研通AI6应助科研通管家采纳,获得10
39秒前
39秒前
39秒前
Jack完成签到 ,获得积分10
40秒前
诺贝尔候选人完成签到 ,获得积分10
41秒前
deswin完成签到,获得积分10
42秒前
Jasper应助传统的戎采纳,获得10
44秒前
歪比巴卜发布了新的文献求助10
45秒前
会吐泡的小鱼完成签到,获得积分10
49秒前
粥粥完成签到 ,获得积分10
51秒前
56秒前
Gryff完成签到 ,获得积分10
57秒前
SUIRIGO完成签到,获得积分10
57秒前
yf发布了新的文献求助10
57秒前
小二郎应助科研小趴菜采纳,获得10
1分钟前
要减肥的安柏完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
许三问完成签到 ,获得积分0
1分钟前
吃个板栗发布了新的文献求助30
1分钟前
传统的戎发布了新的文献求助10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 600
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5564750
求助须知:如何正确求助?哪些是违规求助? 4649438
关于积分的说明 14688867
捐赠科研通 4591420
什么是DOI,文献DOI怎么找? 2519123
邀请新用户注册赠送积分活动 1491823
关于科研通互助平台的介绍 1462846