清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

A New Deep Transfer Learning Based on Sparse Auto-Encoder for Fault Diagnosis

人工智能 计算机科学 深度学习 学习迁移 自编码 原始数据 断层(地质) 人工神经网络 滤波器(信号处理) 机器学习 代表(政治) 编码器 模式识别(心理学) 试验数据 数据挖掘 地质学 计算机视觉 地震学 操作系统 政治学 政治 法学 程序设计语言
作者
Long Wen,Liang Gao,Xinyu Li
出处
期刊:IEEE transactions on systems, man, and cybernetics [Institute of Electrical and Electronics Engineers]
卷期号:49 (1): 136-144 被引量:932
标识
DOI:10.1109/tsmc.2017.2754287
摘要

Fault diagnosis plays an important role in modern industry. With the development of smart manufacturing, the data-driven fault diagnosis becomes hot. However, traditional methods have two shortcomings: 1) their performances depend on the good design of handcrafted features of data, but it is difficult to predesign these features and 2) they work well under a general assumption: the training data and testing data should be drawn from the same distribution, but this assumption fails in many engineering applications. Since deep learning (DL) can extract the hierarchical representation features of raw data, and transfer learning provides a good way to perform a learning task on the different but related distribution datasets, deep transfer learning (DTL) has been developed for fault diagnosis. In this paper, a new DTL method is proposed. It uses a three-layer sparse auto-encoder to extract the features of raw data, and applies the maximum mean discrepancy term to minimizing the discrepancy penalty between the features from training data and testing data. The proposed DTL is tested on the famous motor bearing dataset from the Case Western Reserve University. The results show a good improvement, and DTL achieves higher prediction accuracies on most experiments than DL. The prediction accuracy of DTL, which is as high as 99.82%, is better than the results of other algorithms, including deep belief network, sparse filter, artificial neural network, support vector machine and some other traditional methods. What is more, two additional analytical experiments are conducted. The results show that a good unlabeled third dataset may be helpful to DTL, and a good linear relationship between the final prediction accuracies and their standard deviations have been observed.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ding应助Marshall采纳,获得10
9秒前
zhangjianzeng完成签到 ,获得积分10
13秒前
woxinyouyou完成签到,获得积分10
14秒前
21秒前
赵一完成签到 ,获得积分10
22秒前
Marshall发布了新的文献求助10
27秒前
31秒前
sonicker完成签到 ,获得积分10
39秒前
dawnfrf完成签到,获得积分10
49秒前
ding应助jjyyy采纳,获得10
54秒前
JamesPei应助桃子e采纳,获得10
1分钟前
minjeong完成签到,获得积分10
1分钟前
1分钟前
量子星尘发布了新的文献求助10
1分钟前
桃子e发布了新的文献求助10
1分钟前
1分钟前
蝎子莱莱xth完成签到,获得积分10
1分钟前
怕黑小伙发布了新的文献求助10
1分钟前
1分钟前
氢锂钠钾铷铯钫完成签到,获得积分10
1分钟前
Square完成签到,获得积分10
1分钟前
jjyyy发布了新的文献求助10
1分钟前
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
科研通AI6.1应助xiaoyu采纳,获得10
2分钟前
披着羊皮的狼完成签到 ,获得积分10
2分钟前
科研通AI6.1应助桃子e采纳,获得10
2分钟前
3分钟前
桃子e发布了新的文献求助10
3分钟前
3分钟前
Edward发布了新的文献求助10
3分钟前
3分钟前
CipherSage应助科研通管家采纳,获得10
3分钟前
zzhui完成签到,获得积分10
3分钟前
哈哈完成签到,获得积分10
4分钟前
4分钟前
xiaoyu发布了新的文献求助10
4分钟前
一颗困困豆耶完成签到,获得积分10
5分钟前
小马甲应助桃子e采纳,获得10
5分钟前
文艺的鲜花完成签到 ,获得积分10
5分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Electron Energy Loss Spectroscopy 1500
Tip-in balloon grenadoplasty for uncrossable chronic total occlusions 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5788937
求助须知:如何正确求助?哪些是违规求助? 5713498
关于积分的说明 15474025
捐赠科研通 4916906
什么是DOI,文献DOI怎么找? 2646617
邀请新用户注册赠送积分活动 1594299
关于科研通互助平台的介绍 1548721