亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A New Deep Transfer Learning Based on Sparse Auto-Encoder for Fault Diagnosis

人工智能 计算机科学 深度学习 学习迁移 自编码 原始数据 断层(地质) 人工神经网络 滤波器(信号处理) 机器学习 代表(政治) 编码器 模式识别(心理学) 试验数据 数据挖掘 地质学 计算机视觉 地震学 操作系统 政治 政治学 程序设计语言 法学
作者
Long Wen,Liang Gao,Xinyu Li
出处
期刊:IEEE transactions on systems, man, and cybernetics [Institute of Electrical and Electronics Engineers]
卷期号:49 (1): 136-144 被引量:932
标识
DOI:10.1109/tsmc.2017.2754287
摘要

Fault diagnosis plays an important role in modern industry. With the development of smart manufacturing, the data-driven fault diagnosis becomes hot. However, traditional methods have two shortcomings: 1) their performances depend on the good design of handcrafted features of data, but it is difficult to predesign these features and 2) they work well under a general assumption: the training data and testing data should be drawn from the same distribution, but this assumption fails in many engineering applications. Since deep learning (DL) can extract the hierarchical representation features of raw data, and transfer learning provides a good way to perform a learning task on the different but related distribution datasets, deep transfer learning (DTL) has been developed for fault diagnosis. In this paper, a new DTL method is proposed. It uses a three-layer sparse auto-encoder to extract the features of raw data, and applies the maximum mean discrepancy term to minimizing the discrepancy penalty between the features from training data and testing data. The proposed DTL is tested on the famous motor bearing dataset from the Case Western Reserve University. The results show a good improvement, and DTL achieves higher prediction accuracies on most experiments than DL. The prediction accuracy of DTL, which is as high as 99.82%, is better than the results of other algorithms, including deep belief network, sparse filter, artificial neural network, support vector machine and some other traditional methods. What is more, two additional analytical experiments are conducted. The results show that a good unlabeled third dataset may be helpful to DTL, and a good linear relationship between the final prediction accuracies and their standard deviations have been observed.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
量子星尘发布了新的文献求助10
5秒前
TianY天翊发布了新的文献求助10
6秒前
搜集达人应助读书的时候采纳,获得10
10秒前
TianY天翊完成签到,获得积分10
14秒前
30秒前
量子星尘发布了新的文献求助10
38秒前
科研通AI6.1应助读书的时候采纳,获得100
40秒前
wanci应助Xuxiaojun采纳,获得10
42秒前
55秒前
Xuxiaojun发布了新的文献求助10
1分钟前
1分钟前
1分钟前
科研通AI2S应助读书的时候采纳,获得10
1分钟前
1分钟前
1分钟前
1分钟前
大模型应助科研通管家采纳,获得10
1分钟前
木木完成签到 ,获得积分10
2分钟前
星辰大海应助读书的时候采纳,获得10
2分钟前
2分钟前
靓丽战斗机完成签到 ,获得积分10
2分钟前
chunlily完成签到,获得积分10
2分钟前
2分钟前
3分钟前
3分钟前
Migue发布了新的文献求助10
3分钟前
李爱国应助读书的时候采纳,获得10
3分钟前
CipherSage应助jy采纳,获得10
3分钟前
3分钟前
3分钟前
3分钟前
jy发布了新的文献求助10
3分钟前
共享精神应助孙泉采纳,获得10
4分钟前
So完成签到 ,获得积分10
4分钟前
yl完成签到 ,获得积分10
4分钟前
4分钟前
失眠的访枫完成签到 ,获得积分10
4分钟前
4分钟前
嘻嘻哈哈发布了新的文献求助10
4分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Russian Foreign Policy: Change and Continuity 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5732348
求助须知:如何正确求助?哪些是违规求助? 5338531
关于积分的说明 15322173
捐赠科研通 4877968
什么是DOI,文献DOI怎么找? 2620764
邀请新用户注册赠送积分活动 1569988
关于科研通互助平台的介绍 1526635