A New Deep Transfer Learning Based on Sparse Auto-Encoder for Fault Diagnosis

人工智能 计算机科学 深度学习 学习迁移 自编码 原始数据 断层(地质) 人工神经网络 滤波器(信号处理) 机器学习 代表(政治) 编码器 模式识别(心理学) 试验数据 数据挖掘 地质学 计算机视觉 地震学 操作系统 政治 政治学 程序设计语言 法学
作者
Long Wen,Liang Gao,Xinyu Li
出处
期刊:IEEE transactions on systems, man, and cybernetics [Institute of Electrical and Electronics Engineers]
卷期号:49 (1): 136-144 被引量:932
标识
DOI:10.1109/tsmc.2017.2754287
摘要

Fault diagnosis plays an important role in modern industry. With the development of smart manufacturing, the data-driven fault diagnosis becomes hot. However, traditional methods have two shortcomings: 1) their performances depend on the good design of handcrafted features of data, but it is difficult to predesign these features and 2) they work well under a general assumption: the training data and testing data should be drawn from the same distribution, but this assumption fails in many engineering applications. Since deep learning (DL) can extract the hierarchical representation features of raw data, and transfer learning provides a good way to perform a learning task on the different but related distribution datasets, deep transfer learning (DTL) has been developed for fault diagnosis. In this paper, a new DTL method is proposed. It uses a three-layer sparse auto-encoder to extract the features of raw data, and applies the maximum mean discrepancy term to minimizing the discrepancy penalty between the features from training data and testing data. The proposed DTL is tested on the famous motor bearing dataset from the Case Western Reserve University. The results show a good improvement, and DTL achieves higher prediction accuracies on most experiments than DL. The prediction accuracy of DTL, which is as high as 99.82%, is better than the results of other algorithms, including deep belief network, sparse filter, artificial neural network, support vector machine and some other traditional methods. What is more, two additional analytical experiments are conducted. The results show that a good unlabeled third dataset may be helpful to DTL, and a good linear relationship between the final prediction accuracies and their standard deviations have been observed.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zhuz完成签到,获得积分20
刚刚
太清完成签到,获得积分10
刚刚
dujinjun完成签到,获得积分10
1秒前
LYH完成签到,获得积分10
1秒前
呆萌板凳完成签到,获得积分10
1秒前
猛犸象冲冲冲完成签到,获得积分10
1秒前
qi完成签到,获得积分10
1秒前
香蕉觅云应助动听的笑南采纳,获得10
1秒前
科研通AI5应助擦撒擦擦采纳,获得10
1秒前
2秒前
2秒前
2秒前
棒棒睡不着(科研版)完成签到,获得积分10
3秒前
量子星尘发布了新的文献求助10
3秒前
若ruofeng完成签到,获得积分10
3秒前
传奇3应助伶俐的热狗采纳,获得10
3秒前
哈哈哈完成签到,获得积分20
4秒前
xsxx完成签到,获得积分10
4秒前
szbllc完成签到,获得积分10
5秒前
彪壮的青亦完成签到,获得积分10
5秒前
读研好难发布了新的文献求助10
6秒前
whisper完成签到,获得积分10
6秒前
华仔应助ww采纳,获得10
6秒前
applepie发布了新的文献求助10
7秒前
Grayball应助若ruofeng采纳,获得20
7秒前
8秒前
sai发布了新的文献求助20
8秒前
可爱的彩虹完成签到,获得积分10
8秒前
Cech驳回了慕青应助
8秒前
量子星尘发布了新的文献求助10
9秒前
我是老大应助科研通管家采纳,获得10
9秒前
9秒前
daoyi应助科研通管家采纳,获得10
9秒前
wanci应助科研通管家采纳,获得10
9秒前
在水一方应助科研通管家采纳,获得10
9秒前
daoyi应助科研通管家采纳,获得10
9秒前
NexusExplorer应助科研通管家采纳,获得10
10秒前
华仔应助科研通管家采纳,获得100
10秒前
大模型应助科研通管家采纳,获得10
10秒前
10秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
Walter Gilbert: Selected Works 500
An Annotated Checklist of Dinosaur Species by Continent 500
岡本唐貴自伝的回想画集 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 450
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3661418
求助须知:如何正确求助?哪些是违规求助? 3222442
关于积分的说明 9745787
捐赠科研通 2932029
什么是DOI,文献DOI怎么找? 1605426
邀请新用户注册赠送积分活动 757898
科研通“疑难数据库(出版商)”最低求助积分说明 734576