成核
材料科学
钙钛矿(结构)
能量转换效率
化学工程
晶界
钙钛矿太阳能电池
化学气相沉积
粒度
纳米技术
光电子学
复合材料
热力学
微观结构
物理
工程类
作者
Hai-Bin Chen,Xihong Ding,Xu Pan,Tasawar Hayat,Ahmed Alsaedi,Yong Ding,Songyuan Dai
标识
DOI:10.1021/acsami.7b16627
摘要
To achieve high-quality perovskite solar cells (PSCs), the morphology and carrier transportation of perovskite films need to be optimized. Herein, C60 is employed as nucleation sites in PbI2 precursor solution to optimize the morphology of perovskite films via vapor-assisted deposition process. Accompanying the homogeneous nucleation of PbI2, the incorporation of C60 as heterogeneous nucleation sites can lower the nucleation free energy of PbI2, which facilitates the diffusion and reaction between PbI2 and organic source. Meanwhile, C60 could enhance carrier transportation and reduce charge recombination in the perovskite layer due to its high electron mobility and conductivity. In addition, the grain sizes of perovskite get larger with C60 optimizing, which can reduce the grain boundaries and voids in perovskite and prevent the corrosion because of moisture. As a result, we obtain PSCs with a power conversion efficiency (PCE) of 18.33% and excellent stability. The PCEs of unsealed devices drop less than 10% in a dehumidification cabinet after 100 days and remain at 75% of the initial PCE during exposure to ambient air (humidity > 60% RH, temperature > 30 °C) for 30 days.
科研通智能强力驱动
Strongly Powered by AbleSci AI