Stability analysis of hyperspectral band selection algorithms based on neighborhood rough set theory for classification

雅卡索引 高光谱成像 算法 数学 理论(学习稳定性) 粗集 维数之咒 摄动(天文学) 冗余(工程) 模式识别(心理学) 计算机科学 人工智能 数据挖掘 机器学习 物理 量子力学 操作系统
作者
Yao Liu,Junjie Yang,Yuehua Chen,Kezhu Tan,Liguo Wang,Xiaozhen Yan
出处
期刊:Chemometrics and Intelligent Laboratory Systems [Elsevier]
卷期号:169: 35-44 被引量:15
标识
DOI:10.1016/j.chemolab.2017.08.005
摘要

Band selection is a well-known approach for reducing the dimensionality of hyperspectral data. When the neighborhood rough set theory is used to select informative bands, different criteria of the band selection algorithms may lead to different optimal band subsets. Many studies have been analyzed the classification performance of band selection algorithms and have demonstrated that different algorithms are similar for classification. Therefore, rather than evaluating band selection algorithms using only classification accuracy, their stability should also be explored. The stability of an algorithm, which is quantified by the sensitivity of the algorithm to variations in the training set, is a topic of recent interest. Most studies on stability compare the band subsets chosen either from perturbation datasets by randomly removing methods or from perturbation datasets by cross validation methods. These methods either result in an unknown degree of overlap between perturbation datasets, or an invariable degree of overlap. In this work, we propose an adjustable degree of overlap method to construct perturbation datasets, which can set different levels of perturbation. By introducing the Jaccard index as a metric of stability, we explore the stability of six band selection algorithms based on the neighborhood rough set theory. We experimentally demonstrate that the level of perturbation, the degree of overlap, the size of the subset, and the size of the neighborhood affect stability. The results show that the maximal relevance minimal redundancy difference band selection algorithm has the greatest stability overall and better classification ability.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
帅气的梦岚完成签到,获得积分10
1秒前
Outsider完成签到,获得积分10
1秒前
浩然完成签到,获得积分10
2秒前
orixero应助Autken采纳,获得10
2秒前
2秒前
Zzk发布了新的文献求助10
3秒前
3秒前
一米发布了新的文献求助10
3秒前
zhao完成签到 ,获得积分20
3秒前
3秒前
3秒前
4秒前
聪慧的迎夏完成签到,获得积分10
4秒前
老实幻姬完成签到,获得积分10
4秒前
5秒前
Ripal完成签到,获得积分10
5秒前
侠医2012完成签到,获得积分10
5秒前
青黛给青黛的求助进行了留言
5秒前
登登完成签到,获得积分20
5秒前
老实幻姬发布了新的文献求助10
7秒前
自觉的小蝴蝶完成签到,获得积分10
7秒前
7秒前
今后应助GJK采纳,获得10
7秒前
7秒前
7秒前
ly发布了新的文献求助10
8秒前
qp发布了新的文献求助10
8秒前
研友_VZG7GZ应助司徒无剑采纳,获得10
8秒前
852应助科研通管家采纳,获得30
9秒前
慕青应助科研通管家采纳,获得10
9秒前
Hello应助科研通管家采纳,获得10
9秒前
乐乐应助科研通管家采纳,获得10
9秒前
慕青应助科研通管家采纳,获得10
9秒前
我是老大应助科研通管家采纳,获得10
9秒前
科研通AI2S应助科研通管家采纳,获得10
9秒前
所所应助科研通管家采纳,获得10
9秒前
可爱的函函应助为神武采纳,获得10
9秒前
sys发布了新的文献求助10
9秒前
深情安青应助科研通管家采纳,获得10
9秒前
酷波er应助科研通管家采纳,获得10
10秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
A Dissection Guide & Atlas to the Rabbit 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3134618
求助须知:如何正确求助?哪些是违规求助? 2785501
关于积分的说明 7772725
捐赠科研通 2441172
什么是DOI,文献DOI怎么找? 1297862
科研通“疑难数据库(出版商)”最低求助积分说明 625070
版权声明 600813