Stability analysis of hyperspectral band selection algorithms based on neighborhood rough set theory for classification

雅卡索引 高光谱成像 算法 数学 理论(学习稳定性) 粗集 维数之咒 摄动(天文学) 冗余(工程) 模式识别(心理学) 计算机科学 人工智能 数据挖掘 机器学习 操作系统 物理 量子力学
作者
Yao Liu,Junjie Yang,Yuehua Chen,Kezhu Tan,Liguo Wang,Xiaozhen Yan
出处
期刊:Chemometrics and Intelligent Laboratory Systems [Elsevier BV]
卷期号:169: 35-44 被引量:15
标识
DOI:10.1016/j.chemolab.2017.08.005
摘要

Band selection is a well-known approach for reducing the dimensionality of hyperspectral data. When the neighborhood rough set theory is used to select informative bands, different criteria of the band selection algorithms may lead to different optimal band subsets. Many studies have been analyzed the classification performance of band selection algorithms and have demonstrated that different algorithms are similar for classification. Therefore, rather than evaluating band selection algorithms using only classification accuracy, their stability should also be explored. The stability of an algorithm, which is quantified by the sensitivity of the algorithm to variations in the training set, is a topic of recent interest. Most studies on stability compare the band subsets chosen either from perturbation datasets by randomly removing methods or from perturbation datasets by cross validation methods. These methods either result in an unknown degree of overlap between perturbation datasets, or an invariable degree of overlap. In this work, we propose an adjustable degree of overlap method to construct perturbation datasets, which can set different levels of perturbation. By introducing the Jaccard index as a metric of stability, we explore the stability of six band selection algorithms based on the neighborhood rough set theory. We experimentally demonstrate that the level of perturbation, the degree of overlap, the size of the subset, and the size of the neighborhood affect stability. The results show that the maximal relevance minimal redundancy difference band selection algorithm has the greatest stability overall and better classification ability.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
哈哈发布了新的文献求助10
2秒前
田様应助mmm采纳,获得10
2秒前
风雪夜归人完成签到,获得积分10
4秒前
南风吹梦完成签到,获得积分10
5秒前
Hello应助瘦瘦的自中采纳,获得10
6秒前
8秒前
醍醐不醒完成签到,获得积分10
8秒前
Aprilapple完成签到,获得积分10
9秒前
9秒前
tune完成签到,获得积分20
10秒前
Coraline应助化学元素采纳,获得20
11秒前
醍醐不醒发布了新的文献求助10
14秒前
16秒前
赘婿应助chloe采纳,获得10
16秒前
萧水白应助冰凝忆雪采纳,获得10
16秒前
gggggd完成签到,获得积分10
16秒前
量子星尘发布了新的文献求助10
18秒前
高大莺完成签到 ,获得积分10
20秒前
小蘑菇应助五十采纳,获得10
20秒前
天边的流浪狗完成签到,获得积分10
20秒前
zjh关闭了zjh文献求助
21秒前
赘婿应助翟如风采纳,获得10
22秒前
Rabbit完成签到,获得积分10
22秒前
乐乐应助醍醐不醒采纳,获得10
23秒前
qiuyue完成签到,获得积分10
24秒前
25秒前
赘婿应助休眠火山采纳,获得10
26秒前
26秒前
27秒前
28秒前
ding应助胥风采纳,获得10
29秒前
chloe发布了新的文献求助10
31秒前
文静千凡发布了新的文献求助10
31秒前
五十发布了新的文献求助10
31秒前
伯云发布了新的文献求助10
33秒前
daodaodaodao完成签到,获得积分10
36秒前
38秒前
从容晓凡发布了新的文献求助10
40秒前
鱼圆杂铺发布了新的文献求助10
42秒前
43秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Comparison of adverse drug reactions of heparin and its derivates in the European Economic Area based on data from EudraVigilance between 2017 and 2021 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3952529
求助须知:如何正确求助?哪些是违规求助? 3497916
关于积分的说明 11089399
捐赠科研通 3228442
什么是DOI,文献DOI怎么找? 1784930
邀请新用户注册赠送积分活动 868979
科研通“疑难数据库(出版商)”最低求助积分说明 801309