亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Stability analysis of hyperspectral band selection algorithms based on neighborhood rough set theory for classification

雅卡索引 高光谱成像 算法 数学 理论(学习稳定性) 粗集 维数之咒 摄动(天文学) 冗余(工程) 模式识别(心理学) 计算机科学 人工智能 数据挖掘 机器学习 操作系统 物理 量子力学
作者
Yao Liu,Junjie Yang,Yuehua Chen,Kezhu Tan,Liguo Wang,Xiaozhen Yan
出处
期刊:Chemometrics and Intelligent Laboratory Systems [Elsevier]
卷期号:169: 35-44 被引量:15
标识
DOI:10.1016/j.chemolab.2017.08.005
摘要

Band selection is a well-known approach for reducing the dimensionality of hyperspectral data. When the neighborhood rough set theory is used to select informative bands, different criteria of the band selection algorithms may lead to different optimal band subsets. Many studies have been analyzed the classification performance of band selection algorithms and have demonstrated that different algorithms are similar for classification. Therefore, rather than evaluating band selection algorithms using only classification accuracy, their stability should also be explored. The stability of an algorithm, which is quantified by the sensitivity of the algorithm to variations in the training set, is a topic of recent interest. Most studies on stability compare the band subsets chosen either from perturbation datasets by randomly removing methods or from perturbation datasets by cross validation methods. These methods either result in an unknown degree of overlap between perturbation datasets, or an invariable degree of overlap. In this work, we propose an adjustable degree of overlap method to construct perturbation datasets, which can set different levels of perturbation. By introducing the Jaccard index as a metric of stability, we explore the stability of six band selection algorithms based on the neighborhood rough set theory. We experimentally demonstrate that the level of perturbation, the degree of overlap, the size of the subset, and the size of the neighborhood affect stability. The results show that the maximal relevance minimal redundancy difference band selection algorithm has the greatest stability overall and better classification ability.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI6.1应助刘润泽采纳,获得10
6秒前
午盏完成签到,获得积分10
7秒前
7秒前
meow发布了新的文献求助10
10秒前
科研力力发布了新的文献求助10
14秒前
酷波er应助鱼蛋采纳,获得30
20秒前
asdf完成签到 ,获得积分10
22秒前
24秒前
Kz发布了新的文献求助10
26秒前
illuminate完成签到 ,获得积分10
27秒前
蓝胖子完成签到 ,获得积分10
29秒前
心灵美猎豹完成签到,获得积分20
31秒前
41秒前
41秒前
丘比特应助科研通管家采纳,获得10
41秒前
Akim应助科研通管家采纳,获得10
41秒前
Owen应助科研通管家采纳,获得10
42秒前
42秒前
42秒前
科研通AI2S应助科研通管家采纳,获得10
42秒前
领导范儿应助科研通管家采纳,获得10
42秒前
临子完成签到,获得积分10
44秒前
46秒前
46秒前
49秒前
wangwangwang完成签到,获得积分10
52秒前
英姑应助活力天蓝采纳,获得30
52秒前
年年年年发布了新的文献求助10
52秒前
无心的善愁完成签到 ,获得积分10
58秒前
冷酷愚志完成签到,获得积分10
59秒前
李健应助年年年年采纳,获得10
59秒前
许伟洋完成签到 ,获得积分10
59秒前
汉堡包应助怕孤单的石头采纳,获得10
1分钟前
不安的未来完成签到,获得积分10
1分钟前
遥知马完成签到,获得积分10
1分钟前
1分钟前
1分钟前
科研通AI6.1应助Kz采纳,获得10
1分钟前
冰汤葫芦发布了新的文献求助10
1分钟前
桃子e发布了新的文献求助10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
Electron Energy Loss Spectroscopy 1500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5779750
求助须知:如何正确求助?哪些是违规求助? 5649480
关于积分的说明 15452248
捐赠科研通 4910842
什么是DOI,文献DOI怎么找? 2642978
邀请新用户注册赠送积分活动 1590629
关于科研通互助平台的介绍 1545067