Many Hands Make Light Work: Transferring Knowledge From Auxiliary Tasks for Video-Text Retrieval

计算机科学 杠杆(统计) 情报检索 利用 答疑 知识图 管道(软件) 图形 人工智能 自然语言处理 理论计算机科学 计算机安全 程序设计语言
作者
Wei Wang,Junyu Gao,Xiaoshan Yang,Changsheng Xu
出处
期刊:IEEE Transactions on Multimedia [Institute of Electrical and Electronics Engineers]
卷期号:25: 2661-2674 被引量:11
标识
DOI:10.1109/tmm.2022.3149716
摘要

The problem of video-text retrieval, which searches videos via natural language descriptions or vice versa, has attracted growing attention due to the explosive scale of videos produced every day. The dominant approaches for this problem follow the pipeline that firstly learns compact feature representations of videos and texts, and then jointly embeds them into a common feature space where matched video-text pairs are close and unmatched pairs are far away. However, most of them neither consider the structural similarities among cross-modal samples in a global view, nor leverage useful information from other relevant retrieval processes. We argue that both information has great potential for video-text retrieval. In this paper, we treat the relevant retrieval processes as auxiliary tasks and we extract useful knowledge from them by exploiting structural similarities via Graph Neural Networks (GNNs). We then progressively transfer the knowledge from auxiliary tasks in a general-to-specific manner to assist the main task of the current retrieval process. Specifically, for the retrieval of the given query, we first construct a sequence of query-graphs whose central queries are chosen from distant to close to the given query. Then we conduct knowledge-guided message passing in each query-graph to exploit regional structural similarities and gather knowledge of different levels from the updated query-graphs with a knowledge-based attention mechanism. Finally, we transfer the extracted useful knowledge from general to specific to assist the current retrieval process. Extensive experimental results show that our model outperforms the state-of-the-arts on four benchmarks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
semigreen完成签到 ,获得积分10
1秒前
1秒前
yzy发布了新的文献求助10
2秒前
褚沧海完成签到,获得积分20
2秒前
大葡萄发布了新的文献求助10
5秒前
crillzlol完成签到,获得积分10
5秒前
6秒前
领导范儿应助可靠的寒风采纳,获得10
8秒前
SciGPT应助lzx采纳,获得30
9秒前
风中听枫完成签到 ,获得积分10
9秒前
10秒前
英姑应助务实大神采纳,获得10
10秒前
我是老大应助大马猴采纳,获得10
10秒前
HANGOVERG发布了新的文献求助10
11秒前
害羞小猫咪完成签到,获得积分10
13秒前
13秒前
liusuyi完成签到,获得积分10
13秒前
英俊白莲发布了新的文献求助10
13秒前
lpx发布了新的文献求助10
16秒前
乐乐应助wuyongmei采纳,获得10
16秒前
16秒前
婷123发布了新的文献求助10
17秒前
称心的半烟完成签到 ,获得积分10
17秒前
全力以赴先生完成签到,获得积分10
17秒前
20秒前
20秒前
VDC应助英俊白莲采纳,获得30
21秒前
Owen应助英俊白莲采纳,获得10
21秒前
21秒前
坦率听荷发布了新的文献求助10
21秒前
楚阔应助大葡萄采纳,获得40
23秒前
襄阳完成签到,获得积分10
24秒前
Z160发布了新的文献求助10
24秒前
耍酷书雁完成签到 ,获得积分10
24秒前
大马猴发布了新的文献求助10
24秒前
cadcae发布了新的文献求助200
26秒前
姜07发布了新的文献求助10
29秒前
CodeCraft应助meng采纳,获得10
30秒前
32秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger Heßler, Claudia, Rud 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 1000
Natural History of Mantodea 螳螂的自然史 1000
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
How Maoism Was Made: Reconstructing China, 1949-1965 800
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 量子力学 冶金 电极
热门帖子
关注 科研通微信公众号,转发送积分 3321819
求助须知:如何正确求助?哪些是违规求助? 2953110
关于积分的说明 8564033
捐赠科研通 2630614
什么是DOI,文献DOI怎么找? 1439256
科研通“疑难数据库(出版商)”最低求助积分说明 667057
邀请新用户注册赠送积分活动 653495