Many Hands Make Light Work: Transferring Knowledge From Auxiliary Tasks for Video-Text Retrieval

计算机科学 杠杆(统计) 情报检索 利用 答疑 知识图 管道(软件) 图形 人工智能 自然语言处理 理论计算机科学 计算机安全 程序设计语言
作者
Wei Wang,Junyu Gao,Xiaoshan Yang,Changsheng Xu
出处
期刊:IEEE Transactions on Multimedia [Institute of Electrical and Electronics Engineers]
卷期号:25: 2661-2674 被引量:11
标识
DOI:10.1109/tmm.2022.3149716
摘要

The problem of video-text retrieval, which searches videos via natural language descriptions or vice versa, has attracted growing attention due to the explosive scale of videos produced every day. The dominant approaches for this problem follow the pipeline that firstly learns compact feature representations of videos and texts, and then jointly embeds them into a common feature space where matched video-text pairs are close and unmatched pairs are far away. However, most of them neither consider the structural similarities among cross-modal samples in a global view, nor leverage useful information from other relevant retrieval processes. We argue that both information has great potential for video-text retrieval. In this paper, we treat the relevant retrieval processes as auxiliary tasks and we extract useful knowledge from them by exploiting structural similarities via Graph Neural Networks (GNNs). We then progressively transfer the knowledge from auxiliary tasks in a general-to-specific manner to assist the main task of the current retrieval process. Specifically, for the retrieval of the given query, we first construct a sequence of query-graphs whose central queries are chosen from distant to close to the given query. Then we conduct knowledge-guided message passing in each query-graph to exploit regional structural similarities and gather knowledge of different levels from the updated query-graphs with a knowledge-based attention mechanism. Finally, we transfer the extracted useful knowledge from general to specific to assist the current retrieval process. Extensive experimental results show that our model outperforms the state-of-the-arts on four benchmarks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Liufgui应助禅花游鱼采纳,获得10
2秒前
Ava应助小巧的怜蕾采纳,获得10
3秒前
领导范儿应助小米粒采纳,获得10
4秒前
5秒前
今后应助科研通管家采纳,获得10
5秒前
生动路人应助科研通管家采纳,获得10
5秒前
Jasper应助科研通管家采纳,获得10
6秒前
dong应助科研通管家采纳,获得10
6秒前
zzzzzzzz应助科研通管家采纳,获得10
6秒前
CipherSage应助科研通管家采纳,获得10
6秒前
dong应助科研通管家采纳,获得10
6秒前
6秒前
6秒前
6秒前
ding应助科研通管家采纳,获得10
6秒前
6秒前
劼大大完成签到,获得积分10
7秒前
李健应助五花肉采纳,获得10
7秒前
FFSGF发布了新的文献求助10
9秒前
郭睿发布了新的文献求助10
9秒前
顾矜应助紧张的世德采纳,获得10
12秒前
13秒前
科目三应助wfy采纳,获得10
13秒前
踩点行动完成签到,获得积分10
14秒前
丘比特应助FFSGF采纳,获得10
14秒前
叫啥好呢应助吴伊玟采纳,获得10
15秒前
上官若男应助呆萌忆山采纳,获得10
16秒前
bella完成签到,获得积分10
17秒前
18秒前
雨落发布了新的文献求助10
19秒前
梧桐应助舒适一手采纳,获得10
20秒前
小蛇玩完成签到,获得积分10
20秒前
KOIKOI发布了新的文献求助10
20秒前
6666发布了新的文献求助10
22秒前
23秒前
25秒前
25秒前
25秒前
情怀应助今天不晚饭吃采纳,获得10
27秒前
喃安完成签到,获得积分10
27秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 2390
A new approach to the extrapolation of accelerated life test data 1000
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4010435
求助须知:如何正确求助?哪些是违规求助? 3550258
关于积分的说明 11305330
捐赠科研通 3284688
什么是DOI,文献DOI怎么找? 1810836
邀请新用户注册赠送积分活动 886556
科研通“疑难数据库(出版商)”最低求助积分说明 811470