Volatile compounds in human breath: critical review and meta-analysis

生物标志物发现 生物标志物 气体分析呼吸 荟萃分析 计算生物学 线性判别分析 代谢组学 生物信息学 计算机科学 化学 人工智能 生物 医学 蛋白质组学 病理 色谱法 生物化学 基因
作者
Theo Issitt,Wiggins L,Martin Veysey,Sean T. Sweeney,William J. Brackenbury,K. R. Redeker
出处
期刊:Journal of Breath Research [IOP Publishing]
卷期号:16 (2): 024001-024001 被引量:10
标识
DOI:10.1088/1752-7163/ac5230
摘要

Volatile compounds contained in human breath reflect the inner workings of the body. A large number of studies have been published that link individual components of breath to disease, but diagnostic applications remain limited, in part due to inconsistent and conflicting identification of breath biomarkers. New approaches are therefore required to identify effective biomarker targets. Here, volatile organic compounds have been identified in the literature from four metabolically and physiologically distinct diseases and grouped into chemical functional groups (e.g. methylated hydrocarbons or aldehydes; based on known metabolic and enzymatic pathways) to support biomarker discovery and provide new insight on existing data. Using this functional grouping approach, principal component analysis doubled explanatory capacity from 19.1% to 38% relative to single individual compound approaches. Random forest and linear discriminant analysis reveal 93% classification accuracy for cancer. This review and meta-analysis provides insight for future research design by identifying volatile functional groups associated with disease. By incorporating our understanding of the complexities of the human body, along with accounting for variability in methodological and analytical approaches, this work demonstrates that a suite of targeted, functional volatile biomarkers, rather than individual biomarker compounds, will improve accuracy and success in diagnostic research and application.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
hellocc应助科研通管家采纳,获得40
刚刚
Charles完成签到,获得积分10
刚刚
科目三应助科研通管家采纳,获得30
刚刚
韦灵珊应助科研通管家采纳,获得10
刚刚
彭于晏应助科研通管家采纳,获得10
刚刚
852应助科研通管家采纳,获得10
刚刚
斯文败类应助科研通管家采纳,获得10
刚刚
搜集达人应助科研通管家采纳,获得10
1秒前
赘婿应助科研通管家采纳,获得10
1秒前
xxfsx应助科研通管家采纳,获得10
1秒前
顾矜应助科研通管家采纳,获得10
1秒前
浮游应助科研通管家采纳,获得10
1秒前
1秒前
英姑应助科研通管家采纳,获得10
1秒前
科研通AI6应助科研通管家采纳,获得30
1秒前
1秒前
1秒前
FashionBoy应助科研通管家采纳,获得10
1秒前
无花果应助鹿鹿儿采纳,获得20
1秒前
1秒前
英俊的铭应助科研通管家采纳,获得10
2秒前
我是老大应助科研通管家采纳,获得200
2秒前
科研通AI6应助科研通管家采纳,获得10
2秒前
小青椒应助科研通管家采纳,获得10
2秒前
浮游应助科研通管家采纳,获得10
2秒前
完美世界应助科研通管家采纳,获得10
2秒前
2秒前
2秒前
成就万仇发布了新的文献求助20
2秒前
2秒前
3秒前
jia发布了新的文献求助10
4秒前
4秒前
4秒前
5秒前
jing发布了新的文献求助30
5秒前
Orange应助Tonsil01采纳,获得30
5秒前
Fledge发布了新的文献求助30
5秒前
瓜i发布了新的文献求助10
5秒前
乙予安应助mengdewen采纳,获得20
6秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
Artificial Intelligence driven Materials Design 600
Comparing natural with chemical additive production 500
Machine Learning in Chemistry 500
Investigation the picking techniques for developing and improving the mechanical harvesting of citrus 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5193007
求助须知:如何正确求助?哪些是违规求助? 4375799
关于积分的说明 13626640
捐赠科研通 4230400
什么是DOI,文献DOI怎么找? 2320393
邀请新用户注册赠送积分活动 1318798
关于科研通互助平台的介绍 1269105