Multiplexed Identification of Bacterial Biofilm Infections Based on Machine-Learning-Aided Lanthanide Encoding

生物膜 多路复用 微生物学 表面蛋白 表面电荷 鉴定(生物学) 纳米技术 材料科学 化学 生物 细菌 生物信息学 病毒学 遗传学 植物 物理化学
作者
Jie Wang,Zhuoran Jiang,Yong Wei,Wenjie Wang,Fubing Wang,Yanbing Yang,Heng Song,Quan Yuan
出处
期刊:ACS Nano [American Chemical Society]
卷期号:16 (2): 3300-3310 被引量:35
标识
DOI:10.1021/acsnano.1c11333
摘要

Pathogenic biofilms are up to 1000-fold more drug-resistant than planktonic pathogens and cause about 80% of all chronic infections worldwide. The lack of prompt and reliable biofilm identification methods seriously prohibits the diagnosis and treatment of biofilm infections. Here, we developed a machine-learning-aided cocktail assay for prompt and reliable biofilm detection. Lanthanide nanoparticles with different emissions, surface charges, and hydrophilicity are formulated into the cocktail kits. The lanthanide nanoparticles in the cocktail kits can offer competitive interactions with the biofilm and further maximize the charge and hydrophilicity differences between biofilms. The physicochemical heterogeneities of biofilms were transformed into luminescence intensity at different wavelengths by the cocktail kits. The luminescence signals were used as learning data to train the random forest algorithm, and the algorithm could identify the unknown biofilms within minutes after training. Electrostatic attractions and hydrophobic-hydrophobic interactions were demonstrated to dominate the binding of the cocktail kits to the biofilms. By rationally designing the charge and hydrophilicity of the cocktail kit, unknown biofilms of pathogenic clinical isolates were identified with an overall accuracy of over 80% based on the random forest algorithm. Moreover, the antibiotic-loaded cocktail nanoprobes efficiently eradicated biofilms since the nanoprobes could penetrate deep into the biofilms. This work can serve as a reliable technique for the diagnosis of biofilm infections and it can also provide instructions for the design of multiplex assays for detecting biochemical compounds beyond biofilms.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
安静访曼发布了新的文献求助10
1秒前
棒棒糖完成签到,获得积分10
2秒前
xibei发布了新的文献求助10
2秒前
共享精神应助看着过得去采纳,获得10
2秒前
3秒前
风中的青完成签到,获得积分10
3秒前
王振有发布了新的文献求助10
3秒前
都是发布了新的文献求助10
5秒前
烙饼完成签到,获得积分10
5秒前
万能图书馆应助芷毓_Tian采纳,获得10
6秒前
宁幼萱发布了新的文献求助10
6秒前
李爱国应助paojiao不辣采纳,获得10
6秒前
情怀应助soso1010采纳,获得10
6秒前
6秒前
7秒前
星辰大海应助liu采纳,获得10
8秒前
狂野世立发布了新的文献求助10
8秒前
8秒前
yy发布了新的文献求助10
8秒前
pms完成签到,获得积分10
8秒前
gsj关闭了gsj文献求助
8秒前
9秒前
ding应助llzuo采纳,获得10
9秒前
10秒前
飘逸的烧鹅完成签到 ,获得积分10
10秒前
11秒前
伈X发布了新的文献求助10
12秒前
通义千问发布了新的文献求助10
12秒前
12秒前
13秒前
宁幼萱完成签到,获得积分10
14秒前
shuaiwen25完成签到,获得积分10
14秒前
14秒前
小库里2025发布了新的文献求助10
15秒前
li发布了新的文献求助10
15秒前
15秒前
火星上的觅山完成签到,获得积分10
16秒前
16秒前
16秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 1000
CRC Handbook of Chemistry and Physics 104th edition 1000
Izeltabart tapatansine - AdisInsight 600
An International System for Human Cytogenomic Nomenclature (2024) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3768954
求助须知:如何正确求助?哪些是违规求助? 3313999
关于积分的说明 10169957
捐赠科研通 3028917
什么是DOI,文献DOI怎么找? 1662170
邀请新用户注册赠送积分活动 794707
科研通“疑难数据库(出版商)”最低求助积分说明 756358