RamanLIGHT—a graphical user-friendly tool for pre-processing and unmixing hyperspectral Raman spectroscopy images

端元 高光谱成像 计算机科学 模式识别(心理学) 拉曼光谱 规范化(社会学) 人工智能 离群值 平滑的 数据处理 样品(材料) 生物系统 计算机视觉 光学 化学 物理 色谱法 生物 社会学 人类学 操作系统
作者
Robert W. Schmidt,Sander Woutersen,Freek Ariese
出处
期刊:Journal of Optics [IOP Publishing]
卷期号:24 (6): 064011-064011 被引量:21
标识
DOI:10.1088/2040-8986/ac6883
摘要

Abstract Raman spectroscopy is a valuable tool for non-destructive vibrational analysis of chemical compounds in various samples. Through 2D scanning, it one can map the chemical surface distribution in a heterogeneous sample. These hyperspectral Raman images typically contain spectra of pure compounds that are hidden within thousands of sum spectra. Inspecting each spectrum to find the pure compounds in the dataset is impractical, and several algorithms have been described in the literature to help analyze such complex datasets. However, choosing the best approach(es) and optimizing the parameters is often difficult, and the necessary software was not yet combined in a single program. Therefore, we introduce RamanLIGHT, a fast and simple app to pre-process Raman mapping datasets and apply up to eight unsupervised unmixing algorithms to find endmember spectra of pure compounds. The user can select from six smoothing methods, four fluorescence baseline-removal methods, four normalization methods, and cosmic-ray and outlier removal to generate a uniform dataset prior to the unmixing. We included the most promising pre-processing methods, since there is no routine that perfectly fits all types of samples. Unmixed endmember spectra can be further used to visualize the distribution of compounds in a sample by creating abundance maps for each endmember separately, or a single labeled image containing all endmembers. It is also possible to create a mean spectrum for each endmember, which better describes the true compound spectrum. We tested RamanLIGHT on three samples: an aspirin-paracetamol-caffeine tablet, Alzheimer’s disease brain tissue and a phase-separated polymer coating. The datasets were pre-processed and unmixed within seconds to gain endmembers of known and unknown chemical compounds. The unmixing algorithms are sensitive to noisy spectra and strong fluorescence backgrounds, so it is important to apply pre-processing methods to a suitable degree. RamanLIGHT is freely available as an MATLAB and soon as standalone app.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Paris完成签到 ,获得积分10
刚刚
心动nofear发布了新的文献求助10
刚刚
钟琪完成签到,获得积分10
刚刚
1秒前
彬墩墩发布了新的文献求助10
1秒前
浅色墨水发布了新的文献求助10
2秒前
ggggg发布了新的文献求助30
2秒前
小蘑菇应助威武书桃采纳,获得30
3秒前
3秒前
丘比特应助李恩乐采纳,获得10
4秒前
4秒前
流飒完成签到,获得积分10
5秒前
Orange应助Heisenberg采纳,获得10
5秒前
GoldWind完成签到,获得积分20
5秒前
ding应助欣欣子采纳,获得10
6秒前
7秒前
8秒前
9秒前
Jenojam发布了新的文献求助10
12秒前
12秒前
13秒前
陈印发布了新的文献求助10
15秒前
llli完成签到,获得积分20
16秒前
阳哥发布了新的文献求助10
16秒前
小马甲应助糖糖钰采纳,获得10
17秒前
天南完成签到,获得积分10
17秒前
18秒前
知无涯者完成签到,获得积分10
19秒前
19秒前
19秒前
20秒前
20秒前
1212完成签到,获得积分10
21秒前
21秒前
微冷完成签到,获得积分10
22秒前
23秒前
陈印完成签到,获得积分20
23秒前
23秒前
科研通AI5应助雨碎寒江采纳,获得150
24秒前
24秒前
高分求助中
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Les Mantodea de Guyane Insecta, Polyneoptera 1000
工业结晶技术 880
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3490539
求助须知:如何正确求助?哪些是违规求助? 3077414
关于积分的说明 9148826
捐赠科研通 2769667
什么是DOI,文献DOI怎么找? 1519863
邀请新用户注册赠送积分活动 704336
科研通“疑难数据库(出版商)”最低求助积分说明 702135