Heterogeneous Computation and Resource Allocation for Wireless Powered Federated Edge Learning Systems

计算机科学 资源配置 副载波 计算卸载 分布式计算 边缘计算 边缘设备 最优化问题 移动边缘计算 GSM演进的增强数据速率 无线 计算机工程 计算机网络 正交频分复用 人工智能 算法 云计算 频道(广播) 操作系统 电信
作者
Jie Feng,Wenjing Zhang,Qingqi Pei,Jinsong Wu,Xiaodong Lin
出处
期刊:IEEE Transactions on Communications [Institute of Electrical and Electronics Engineers]
卷期号:70 (5): 3220-3233 被引量:82
标识
DOI:10.1109/tcomm.2022.3163439
摘要

Federated learning (FL) is a popular edge learning approach that utilizes local data and computing resources of network edge devices to train machine learning (ML) models while preserving users’ privacy. Nevertheless, performing efficient learning tasks on the devices and achieving longer battery life are primary challenges faced by federated learning. In this paper, we are the first to study the application of heterogeneous computing (HC) and wireless power transfer (WPT) to federated learning to address these challenges. Especially, we propose a heterogeneous computation and resource allocation framework based on a heterogeneous mobile architecture to achieve effective implementation of FL. To minimize the energy consumption of smart devices and maximize their harvesting energy simultaneously, we formulate an optimization problem featuring multidimensional control, which jointly considers time splitting for WPT, dataset size allocation, transmit power allocation and subcarrier assignment during communications, and processor frequency of processing units (central processing unit (CPU) and graphics processing unit (GPU)). However, the major obstacle is how to design a proper algorithm to solve this optimization problem efficiently. For this purpose, we decouple the optimization variables so as to achieve high efficiency in deriving its solution. Particularly, we first compute the optimal processor frequency and dataset size allocation via employing the Lagrangian dual method, followed by finding the closed-form solution to the optimal time splitting allocation, and finally attain the optimal subcarrier assignment as well as transmit power for transmissions through an iteration algorithm. To evaluate the performance of our proposed scheme, we set up four baseline schemes as comparison, and simulation results show that the proposed scheme converges quite fast and better enhance the energy efficiency of the wireless powered FL system compared with the baseline schemes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
暴龙战士图图完成签到,获得积分10
刚刚
hunajx完成签到,获得积分10
1秒前
甜甜醉波发布了新的文献求助10
2秒前
2秒前
曾无忧发布了新的文献求助10
2秒前
沉默的红牛完成签到 ,获得积分10
2秒前
4秒前
Hanny完成签到 ,获得积分10
5秒前
5秒前
Ambi发布了新的文献求助10
6秒前
6秒前
科研通AI2S应助sarah采纳,获得10
6秒前
青苔完成签到,获得积分10
6秒前
豆浆来点蒜泥完成签到,获得积分10
7秒前
tuo zhang发布了新的文献求助10
7秒前
潘fujun完成签到 ,获得积分10
7秒前
8秒前
自己完成签到,获得积分20
8秒前
8秒前
10秒前
心灵美鹤轩完成签到,获得积分10
11秒前
我爱科研发布了新的文献求助20
11秒前
852应助科研通管家采纳,获得10
11秒前
今后应助科研通管家采纳,获得10
11秒前
852应助科研通管家采纳,获得10
11秒前
科研通AI2S应助科研通管家采纳,获得10
11秒前
彭于彦祖应助科研通管家采纳,获得20
11秒前
HEIKU应助科研通管家采纳,获得10
11秒前
BOSS徐应助科研通管家采纳,获得10
11秒前
HEIKU应助科研通管家采纳,获得10
11秒前
wanci应助科研通管家采纳,获得10
11秒前
脑洞疼应助科研通管家采纳,获得10
11秒前
桐桐应助科研通管家采纳,获得10
11秒前
BOSS徐应助科研通管家采纳,获得10
11秒前
雪白问兰应助科研通管家采纳,获得10
11秒前
彭于彦祖应助科研通管家采纳,获得30
11秒前
11秒前
徐徐徐应助科研通管家采纳,获得10
11秒前
12秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3162567
求助须知:如何正确求助?哪些是违规求助? 2813460
关于积分的说明 7900578
捐赠科研通 2473036
什么是DOI,文献DOI怎么找? 1316641
科研通“疑难数据库(出版商)”最低求助积分说明 631375
版权声明 602175