Multi-Level Functional Connectivity Fusion Classification Framework for Brain Disease Diagnosis

人工智能 计算机科学 功能磁共振成像 机器学习 模式识别(心理学) 分类器(UML) 预处理器 人工神经网络 监督学习 神经科学 生物
作者
Yin Liang,Gaoxu Xu
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:26 (6): 2714-2725 被引量:27
标识
DOI:10.1109/jbhi.2022.3159031
摘要

Brain disease diagnosis is a new hotspot in the cross research of artificial intelligence and neuroscience. Quantitative analysis of functional magnetic resonance imaging (fMRI) data can provide valuable biomarkers that contributes to clinical diagnosis, and the analysis of functional connectivity (FC) has become the primary method. However, previous studies mainly focus on brain disease classification based on the low-order FC features, ignoring the potential role of high-order functional relationships among brain regions. To solve this problem, this study proposed a novel multi-level FC fusion classification framework (MFC) for brain disease diagnosis. We firstly designed a deep neural network (DNN) model to extract and learn abstract feature representations for the constructed low-order and high-order FC patterns. Both unsupervised and supervised learning steps were performed during the DNN model training, and the prototype learning was introduced in the supervised fine-tuning to improve the intra-class compactness and inter-class separability of the feature representation. Then, we combined the learned multi-level abstract FC features and trained an ensemble classifier with a hierarchical stacking learning strategy for the brain disease classification. Systematic experiments were conducted on two real large-scale fMRI datasets. Results showed that the proposed MFC model obtained robust classification performance for different preprocessing pipelines, different brain parcellations, and different cross-validation schemes, suggesting the effectiveness and generality of the proposed MFC model. Overall, this study provides a promising solution to combine the informative low-order and high-order FC patterns to further promote the classification of brain diseases.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
桐桐应助陈嘻嘻嘻嘻采纳,获得10
刚刚
852应助~~采纳,获得10
刚刚
深情安青应助清秀嫣娆采纳,获得10
1秒前
CipherSage应助xjwang采纳,获得10
2秒前
告非Goffee完成签到,获得积分10
3秒前
3秒前
传奇3应助流年勿空采纳,获得10
3秒前
大山发布了新的文献求助10
4秒前
4秒前
4秒前
ANDUIN完成签到,获得积分10
5秒前
wanci应助TK采纳,获得10
7秒前
Murphy~完成签到,获得积分10
7秒前
7秒前
情怀应助尔沁采纳,获得10
7秒前
8秒前
稳定上分发布了新的文献求助10
8秒前
小蘑菇应助July采纳,获得10
8秒前
脸脸发布了新的文献求助20
8秒前
明理采珊发布了新的文献求助10
9秒前
9秒前
10秒前
10秒前
鳗鱼续完成签到,获得积分10
10秒前
氿囶完成签到,获得积分10
10秒前
阔达的乌冬面完成签到 ,获得积分10
11秒前
杏里应助俊逸映梦采纳,获得10
11秒前
5114发布了新的文献求助10
11秒前
wanci应助会鹅鹅鹅的鹅采纳,获得10
11秒前
NexusExplorer应助研友_38KgB8采纳,获得10
11秒前
ZYJ完成签到 ,获得积分10
12秒前
田一发布了新的文献求助10
14秒前
mhl11应助lx采纳,获得10
14秒前
稳定上分完成签到,获得积分10
14秒前
Jasmine发布了新的文献求助10
14秒前
15秒前
榎井发布了新的文献求助10
15秒前
领导范儿应助xj采纳,获得10
15秒前
Lyd发布了新的文献求助10
16秒前
搜集达人应助xuan采纳,获得10
16秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Near Infrared Spectra of Origin-defined and Real-world Textiles (NIR-SORT): A spectroscopic and materials characterization dataset for known provenance and post-consumer fabrics 610
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3305763
求助须知:如何正确求助?哪些是违规求助? 2939395
关于积分的说明 8493534
捐赠科研通 2613845
什么是DOI,文献DOI怎么找? 1427668
科研通“疑难数据库(出版商)”最低求助积分说明 663156
邀请新用户注册赠送积分活动 647945