Rolling Bearing Compound Fault Diagnosis Based on Parameter Optimization MCKD and Convolutional Neural Network

卷积神经网络 粒子群优化 布谷鸟搜索 断层(地质) 计算机科学 方位(导航) 模式识别(心理学) 人工智能 人工神经网络 峰度 噪音(视频) 信号(编程语言) 降噪 算法 数学 地震学 地质学 程序设计语言 图像(数学) 统计
作者
Shuzhi Gao,Shuo Shi,Yimin Zhang
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:71: 1-8 被引量:57
标识
DOI:10.1109/tim.2022.3158379
摘要

For the sake of solving the problem of the difficulty of extracting fault features under the background of noise and accurately identify the state of the bearing, a compound fault diagnosis method of rolling bearing based on parameter optimization maximum correlated kurtosis deconvolution (MCKD) and convolutional neural network (CNN) is proposed. First, the adaptive multi-strategy cuckoo search algorithm (MSACS) is used to iteratively optimize the important parameters of MCKD. Second, the optimized MCKD is used to filter and denoise the rolling bearing fault signal, and the denoised signal is obtained. Finally, the denoised signal is input to the CNN model for training and testing to obtain the classification result of fault diagnosis. Through the test and evaluation of the fault dataset, the proposed method is compared with particle swarm optimization (PSO) parameter optimization method (PSO-MCKD-CNN) and CNN method without noise reduction. At the same time, it is compared with other advanced methods. The experimental results shows that this method improves the diagnostic performance of the neural network, obtains higher diagnostic accuracy, and is more conducive to the detection of compound faults.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
懒洋洋完成签到 ,获得积分10
刚刚
JL发布了新的文献求助10
刚刚
Eddy完成签到,获得积分10
刚刚
刚刚
1秒前
1秒前
小杭76应助科研通管家采纳,获得10
1秒前
AMD发布了新的文献求助10
1秒前
爆米花应助科研通管家采纳,获得10
1秒前
1秒前
迷路元枫关注了科研通微信公众号
1秒前
CipherSage应助科研通管家采纳,获得10
1秒前
bkagyin应助科研通管家采纳,获得10
1秒前
汉堡包应助科研通管家采纳,获得10
2秒前
浮游应助科研通管家采纳,获得10
2秒前
CipherSage应助科研通管家采纳,获得10
2秒前
Owen应助科研通管家采纳,获得10
2秒前
赘婿应助科研通管家采纳,获得10
2秒前
浮游应助科研通管家采纳,获得10
2秒前
2秒前
浮游应助科研通管家采纳,获得10
2秒前
打打应助科研通管家采纳,获得10
2秒前
科研通AI6应助科研通管家采纳,获得10
2秒前
烤冷面应助科研通管家采纳,获得10
2秒前
科研通AI6应助科研通管家采纳,获得10
3秒前
科研通AI6应助科研通管家采纳,获得10
3秒前
斯文败类应助科研通管家采纳,获得10
3秒前
3秒前
3秒前
丘比特应助科研通管家采纳,获得10
3秒前
tuanheqi应助科研通管家采纳,获得150
3秒前
英俊的铭应助科研通管家采纳,获得10
3秒前
斯文败类应助科研通管家采纳,获得10
3秒前
Ava应助科研通管家采纳,获得10
3秒前
传奇3应助科研通管家采纳,获得10
3秒前
4秒前
5秒前
Mic应助女爰舍予采纳,获得10
5秒前
5秒前
榕小蜂完成签到 ,获得积分10
7秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Petrucci's General Chemistry: Principles and Modern Applications, 12th edition 600
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
Constitutional and Administrative Law 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5300590
求助须知:如何正确求助?哪些是违规求助? 4448410
关于积分的说明 13845816
捐赠科研通 4334134
什么是DOI,文献DOI怎么找? 2379350
邀请新用户注册赠送积分活动 1374494
关于科研通互助平台的介绍 1340160