清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Rolling Bearing Compound Fault Diagnosis Based on Parameter Optimization MCKD and Convolutional Neural Network

卷积神经网络 粒子群优化 布谷鸟搜索 断层(地质) 计算机科学 方位(导航) 模式识别(心理学) 人工智能 人工神经网络 峰度 噪音(视频) 信号(编程语言) 降噪 算法 数学 地震学 地质学 程序设计语言 图像(数学) 统计
作者
Shuzhi Gao,Shuo Shi,Yimin Zhang
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:71: 1-8 被引量:57
标识
DOI:10.1109/tim.2022.3158379
摘要

For the sake of solving the problem of the difficulty of extracting fault features under the background of noise and accurately identify the state of the bearing, a compound fault diagnosis method of rolling bearing based on parameter optimization maximum correlated kurtosis deconvolution (MCKD) and convolutional neural network (CNN) is proposed. First, the adaptive multi-strategy cuckoo search algorithm (MSACS) is used to iteratively optimize the important parameters of MCKD. Second, the optimized MCKD is used to filter and denoise the rolling bearing fault signal, and the denoised signal is obtained. Finally, the denoised signal is input to the CNN model for training and testing to obtain the classification result of fault diagnosis. Through the test and evaluation of the fault dataset, the proposed method is compared with particle swarm optimization (PSO) parameter optimization method (PSO-MCKD-CNN) and CNN method without noise reduction. At the same time, it is compared with other advanced methods. The experimental results shows that this method improves the diagnostic performance of the neural network, obtains higher diagnostic accuracy, and is more conducive to the detection of compound faults.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
milu完成签到,获得积分10
1秒前
4秒前
milu发布了新的文献求助10
7秒前
wakawaka完成签到 ,获得积分10
18秒前
46秒前
莨菪发布了新的文献求助10
47秒前
tt完成签到,获得积分10
56秒前
斯文的清涟完成签到,获得积分10
1分钟前
1分钟前
盈盈发布了新的文献求助10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
安东尼奥完成签到 ,获得积分10
1分钟前
狂野丹翠应助科研通管家采纳,获得10
1分钟前
持卿应助科研通管家采纳,获得10
1分钟前
科研通AI6应助科研通管家采纳,获得10
1分钟前
持卿应助科研通管家采纳,获得10
1分钟前
持卿应助科研通管家采纳,获得10
1分钟前
持卿应助科研通管家采纳,获得10
1分钟前
我是老大应助莨菪采纳,获得10
1分钟前
CipherSage应助milu采纳,获得20
2分钟前
2分钟前
2分钟前
老马哥完成签到 ,获得积分0
2分钟前
大医仁心完成签到 ,获得积分10
3分钟前
CipherSage应助Penny采纳,获得10
3分钟前
3分钟前
Penny完成签到,获得积分10
3分钟前
Penny发布了新的文献求助10
3分钟前
盈盈发布了新的文献求助10
3分钟前
woxinyouyou完成签到,获得积分0
3分钟前
meeteryu完成签到,获得积分10
3分钟前
SciGPT应助盈盈采纳,获得10
3分钟前
持卿应助科研通管家采纳,获得10
3分钟前
持卿应助科研通管家采纳,获得10
3分钟前
持卿应助科研通管家采纳,获得10
3分钟前
持卿应助科研通管家采纳,获得10
3分钟前
狂野丹翠应助科研通管家采纳,获得10
3分钟前
Wone3完成签到 ,获得积分10
3分钟前
knight7m完成签到 ,获得积分10
3分钟前
哈哈完成签到 ,获得积分10
4分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5715020
求助须知:如何正确求助?哪些是违规求助? 5229427
关于积分的说明 15273979
捐赠科研通 4866106
什么是DOI,文献DOI怎么找? 2612683
邀请新用户注册赠送积分活动 1562893
关于科研通互助平台的介绍 1520160