Influential Spreaders Identification in Complex Networks With TOPSIS and K-Shell Decomposition

中心性 托普西斯 水准点(测量) 节点(物理) 分解法(排队论) 复杂网络 计算机科学 相似性(几何) 分解 数据挖掘 算法 数学 人工智能 工程类 统计 运筹学 地理 生物 万维网 图像(数学) 结构工程 生态学 大地测量学
作者
Xiaoyang Liu,Shu Ye,Giacomo Fiumara,Pasquale De Meo
出处
期刊:IEEE Transactions on Computational Social Systems [Institute of Electrical and Electronics Engineers]
卷期号:10 (1): 347-361 被引量:20
标识
DOI:10.1109/tcss.2022.3148778
摘要

In view that the K-shell decomposition method can only effectively identify a single most influential node, but cannot accurately identify a group of most influential nodes, this article proposes a hybrid method based on K-shell decomposition to identify the most influential spreaders in complex networks. First, the K-shell decomposition method is used to decompose the network, and the network is regarded as a hierarchical structure from the inner core to the periphery core. Second, the existing centrality methods such as H-index are used as the secondary score of the proposed method to select nodes in each hierarchy of the network. In addition, for the sake of alleviating the overlapping problem, the Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS) method is introduced to calculate the comprehensive score of secondary score and overlapping range, and the node with the highest comprehensive score will be selected in each round. The proposed algorithm can be used as a general framework to improve the existing centrality method which can represent nodes with definite values of centrality. Experimental results show that in the susceptible–infected–recovered (SIR) model experiment, compared with the benchmark methods, the infection scale of the proposed K-TOPSIS method in nine real networks is improved by 1.15%, 2.23%, 1.95%, 3.12%, 6.29%, −0.37%, 4.01%, 0.48%, and 0.48%, respectively. The novel method is improved by 0.44, 1.18, 1.16, 11.30, 2.03, 2.53, 2.70, and 2.13 in average shortest path length experiment, respectively, except for Facebook network. It shows that the novel method is reasonable and effective.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
建议保存本图,每天支付宝扫一扫(相册选取)领红包
实时播报
Brenda完成签到,获得积分10
2秒前
酸酸完成签到 ,获得积分10
3秒前
Tom完成签到,获得积分10
5秒前
Hello应助Siliang采纳,获得10
7秒前
酸酸关注了科研通微信公众号
8秒前
keyanlv完成签到,获得积分10
13秒前
子苓完成签到 ,获得积分10
13秒前
bing完成签到,获得积分10
14秒前
zxj完成签到,获得积分10
15秒前
hwl26完成签到,获得积分10
16秒前
SARON完成签到 ,获得积分10
19秒前
锥子完成签到,获得积分10
21秒前
路路完成签到 ,获得积分10
23秒前
陶军辉完成签到 ,获得积分10
24秒前
感动清炎完成签到,获得积分10
26秒前
26秒前
wanci应助科研通管家采纳,获得10
26秒前
pluto应助科研通管家采纳,获得10
26秒前
chrisio应助科研通管家采纳,获得10
26秒前
浮游应助科研通管家采纳,获得10
26秒前
852应助科研通管家采纳,获得10
26秒前
Clara应助科研通管家采纳,获得10
26秒前
子车茗应助科研通管家采纳,获得10
26秒前
pluto应助科研通管家采纳,获得10
27秒前
Tao应助科研通管家采纳,获得10
27秒前
BareBear应助科研通管家采纳,获得10
27秒前
pluto应助科研通管家采纳,获得10
27秒前
ludong_0应助科研通管家采纳,获得10
27秒前
无极微光应助科研通管家采纳,获得20
27秒前
BareBear应助科研通管家采纳,获得10
27秒前
pluto应助科研通管家采纳,获得10
27秒前
子车茗应助科研通管家采纳,获得10
27秒前
BareBear应助科研通管家采纳,获得10
27秒前
BareBear应助科研通管家采纳,获得10
27秒前
27秒前
chrisio应助科研通管家采纳,获得10
27秒前
SciGPT应助科研通管家采纳,获得10
27秒前
充电宝应助科研通管家采纳,获得10
27秒前
bkagyin应助科研通管家采纳,获得20
27秒前
hsq应助科研通管家采纳,获得10
27秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1541
Binary Alloy Phase Diagrams, 2nd Edition 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
A Technologist’s Guide to Performing Sleep Studies 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
Using Genomics to Understand How Invaders May Adapt: A Marine Perspective 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5498677
求助须知:如何正确求助?哪些是违规求助? 4595836
关于积分的说明 14450003
捐赠科研通 4528827
什么是DOI,文献DOI怎么找? 2481735
邀请新用户注册赠送积分活动 1465732
关于科研通互助平台的介绍 1438581