Influential Spreaders Identification in Complex Networks With TOPSIS and K-Shell Decomposition

中心性 托普西斯 水准点(测量) 节点(物理) 分解法(排队论) 复杂网络 计算机科学 相似性(几何) 分解 数据挖掘 算法 数学 人工智能 工程类 统计 运筹学 地理 生物 万维网 图像(数学) 结构工程 生态学 大地测量学
作者
Xiaoyang Liu,Shu Ye,Giacomo Fiumara,Pasquale De Meo
出处
期刊:IEEE Transactions on Computational Social Systems [Institute of Electrical and Electronics Engineers]
卷期号:10 (1): 347-361 被引量:20
标识
DOI:10.1109/tcss.2022.3148778
摘要

In view that the K-shell decomposition method can only effectively identify a single most influential node, but cannot accurately identify a group of most influential nodes, this article proposes a hybrid method based on K-shell decomposition to identify the most influential spreaders in complex networks. First, the K-shell decomposition method is used to decompose the network, and the network is regarded as a hierarchical structure from the inner core to the periphery core. Second, the existing centrality methods such as H-index are used as the secondary score of the proposed method to select nodes in each hierarchy of the network. In addition, for the sake of alleviating the overlapping problem, the Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS) method is introduced to calculate the comprehensive score of secondary score and overlapping range, and the node with the highest comprehensive score will be selected in each round. The proposed algorithm can be used as a general framework to improve the existing centrality method which can represent nodes with definite values of centrality. Experimental results show that in the susceptible–infected–recovered (SIR) model experiment, compared with the benchmark methods, the infection scale of the proposed K-TOPSIS method in nine real networks is improved by 1.15%, 2.23%, 1.95%, 3.12%, 6.29%, −0.37%, 4.01%, 0.48%, and 0.48%, respectively. The novel method is improved by 0.44, 1.18, 1.16, 11.30, 2.03, 2.53, 2.70, and 2.13 in average shortest path length experiment, respectively, except for Facebook network. It shows that the novel method is reasonable and effective.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
sansan完成签到 ,获得积分10
4秒前
wanci应助义气碧菡采纳,获得10
5秒前
星空完成签到 ,获得积分10
5秒前
5秒前
7秒前
7秒前
华仔应助小鱼采纳,获得10
9秒前
10秒前
10秒前
12秒前
13秒前
13秒前
zxy完成签到,获得积分10
13秒前
15秒前
gwen发布了新的文献求助10
15秒前
17秒前
17秒前
中和皇极发布了新的文献求助10
17秒前
义气碧菡发布了新的文献求助10
18秒前
18秒前
cocolu应助谭yuanjun采纳,获得30
19秒前
19秒前
19秒前
周周发布了新的文献求助10
20秒前
feilu发布了新的文献求助10
21秒前
睢先生完成签到,获得积分10
22秒前
22秒前
洋洋发布了新的文献求助10
23秒前
义气碧菡完成签到,获得积分10
24秒前
Zhouzhou完成签到 ,获得积分10
25秒前
25秒前
小鱼发布了新的文献求助10
26秒前
27秒前
28秒前
31秒前
36秒前
37秒前
李爱国应助sen采纳,获得10
38秒前
丘比特应助ming采纳,获得10
41秒前
高分求助中
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger Heßler, Claudia, Rud 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 1000
Natural History of Mantodea 螳螂的自然史 1000
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 500
Spatial Political Economy: Uneven Development and the Production of Nature in Chile 400
Research on managing groups and teams 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3330222
求助须知:如何正确求助?哪些是违规求助? 2959810
关于积分的说明 8597138
捐赠科研通 2638270
什么是DOI,文献DOI怎么找? 1444230
科研通“疑难数据库(出版商)”最低求助积分说明 669074
邀请新用户注册赠送积分活动 656624