Influential Spreaders Identification in Complex Networks With TOPSIS and K-Shell Decomposition

中心性 托普西斯 水准点(测量) 节点(物理) 分解法(排队论) 复杂网络 计算机科学 相似性(几何) 分解 数据挖掘 算法 数学 人工智能 工程类 统计 运筹学 地理 生物 万维网 图像(数学) 结构工程 生态学 大地测量学
作者
Xiaoyang Liu,Shu Ye,Giacomo Fiumara,Pasquale De Meo
出处
期刊:IEEE Transactions on Computational Social Systems [Institute of Electrical and Electronics Engineers]
卷期号:10 (1): 347-361 被引量:20
标识
DOI:10.1109/tcss.2022.3148778
摘要

In view that the K-shell decomposition method can only effectively identify a single most influential node, but cannot accurately identify a group of most influential nodes, this article proposes a hybrid method based on K-shell decomposition to identify the most influential spreaders in complex networks. First, the K-shell decomposition method is used to decompose the network, and the network is regarded as a hierarchical structure from the inner core to the periphery core. Second, the existing centrality methods such as H-index are used as the secondary score of the proposed method to select nodes in each hierarchy of the network. In addition, for the sake of alleviating the overlapping problem, the Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS) method is introduced to calculate the comprehensive score of secondary score and overlapping range, and the node with the highest comprehensive score will be selected in each round. The proposed algorithm can be used as a general framework to improve the existing centrality method which can represent nodes with definite values of centrality. Experimental results show that in the susceptible–infected–recovered (SIR) model experiment, compared with the benchmark methods, the infection scale of the proposed K-TOPSIS method in nine real networks is improved by 1.15%, 2.23%, 1.95%, 3.12%, 6.29%, −0.37%, 4.01%, 0.48%, and 0.48%, respectively. The novel method is improved by 0.44, 1.18, 1.16, 11.30, 2.03, 2.53, 2.70, and 2.13 in average shortest path length experiment, respectively, except for Facebook network. It shows that the novel method is reasonable and effective.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
炙热尔阳完成签到 ,获得积分10
2秒前
15327432191完成签到 ,获得积分10
3秒前
自然的亦寒完成签到,获得积分10
3秒前
暴暴怪超人完成签到,获得积分10
5秒前
5秒前
6秒前
田様应助阳光的灵竹采纳,获得30
7秒前
大强完成签到,获得积分10
9秒前
航的发布了新的文献求助10
9秒前
lq完成签到,获得积分10
11秒前
12秒前
12秒前
笑点低的铁身完成签到 ,获得积分10
14秒前
Orange应助白干采纳,获得10
14秒前
hui完成签到,获得积分10
15秒前
Ava应助中中会发光采纳,获得10
15秒前
一月完成签到,获得积分10
16秒前
17秒前
你嵙这个期刊没买应助qvb采纳,获得10
18秒前
无情颖完成签到 ,获得积分10
18秒前
LL完成签到 ,获得积分10
19秒前
Doctor完成签到 ,获得积分10
22秒前
丘比特应助zhang采纳,获得10
22秒前
23秒前
23秒前
gaga完成签到,获得积分10
25秒前
27秒前
27秒前
梦在远方完成签到 ,获得积分0
30秒前
31秒前
庄彧完成签到 ,获得积分0
32秒前
jason发布了新的文献求助10
33秒前
33秒前
zhang发布了新的文献求助10
37秒前
橙子是不是完成签到,获得积分10
37秒前
37秒前
科研通AI6应助11采纳,获得10
39秒前
内敛诚C完成签到 ,获得积分10
42秒前
雍雍完成签到 ,获得积分10
43秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 600
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5565449
求助须知:如何正确求助?哪些是违规求助? 4650499
关于积分的说明 14691551
捐赠科研通 4592435
什么是DOI,文献DOI怎么找? 2519635
邀请新用户注册赠送积分活动 1492011
关于科研通互助平台的介绍 1463232