Influential Spreaders Identification in Complex Networks With TOPSIS and K-Shell Decomposition

中心性 托普西斯 水准点(测量) 节点(物理) 分解法(排队论) 复杂网络 计算机科学 相似性(几何) 分解 数据挖掘 算法 数学 人工智能 工程类 统计 运筹学 地理 生物 万维网 图像(数学) 结构工程 生态学 大地测量学
作者
Xiaoyang Liu,Shu Ye,Giacomo Fiumara,Pasquale De Meo
出处
期刊:IEEE Transactions on Computational Social Systems [Institute of Electrical and Electronics Engineers]
卷期号:10 (1): 347-361 被引量:20
标识
DOI:10.1109/tcss.2022.3148778
摘要

In view that the K-shell decomposition method can only effectively identify a single most influential node, but cannot accurately identify a group of most influential nodes, this article proposes a hybrid method based on K-shell decomposition to identify the most influential spreaders in complex networks. First, the K-shell decomposition method is used to decompose the network, and the network is regarded as a hierarchical structure from the inner core to the periphery core. Second, the existing centrality methods such as H-index are used as the secondary score of the proposed method to select nodes in each hierarchy of the network. In addition, for the sake of alleviating the overlapping problem, the Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS) method is introduced to calculate the comprehensive score of secondary score and overlapping range, and the node with the highest comprehensive score will be selected in each round. The proposed algorithm can be used as a general framework to improve the existing centrality method which can represent nodes with definite values of centrality. Experimental results show that in the susceptible–infected–recovered (SIR) model experiment, compared with the benchmark methods, the infection scale of the proposed K-TOPSIS method in nine real networks is improved by 1.15%, 2.23%, 1.95%, 3.12%, 6.29%, −0.37%, 4.01%, 0.48%, and 0.48%, respectively. The novel method is improved by 0.44, 1.18, 1.16, 11.30, 2.03, 2.53, 2.70, and 2.13 in average shortest path length experiment, respectively, except for Facebook network. It shows that the novel method is reasonable and effective.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
夏沫完成签到,获得积分10
刚刚
崔楠发布了新的文献求助10
刚刚
Owen应助JJ采纳,获得10
刚刚
小冉发布了新的文献求助10
刚刚
哈皮完成签到,获得积分10
1秒前
1秒前
1秒前
所所应助shan采纳,获得10
1秒前
懒人发布了新的文献求助20
1秒前
你好发布了新的文献求助10
1秒前
1秒前
杜禹锋发布了新的文献求助10
2秒前
2秒前
2秒前
RLL完成签到,获得积分10
3秒前
3秒前
善学以致用应助seven采纳,获得10
3秒前
共享精神应助CikZ采纳,获得10
3秒前
LIU完成签到 ,获得积分10
5秒前
Robin发布了新的文献求助10
5秒前
hihihi完成签到 ,获得积分10
5秒前
SciGPT应助豆豆小baby采纳,获得10
5秒前
6秒前
6秒前
白苹果发布了新的文献求助10
6秒前
hohokuz发布了新的文献求助10
6秒前
结实芝麻完成签到 ,获得积分10
7秒前
研友_Z6Gm58完成签到 ,获得积分10
7秒前
sh完成签到,获得积分10
7秒前
7秒前
子车茗应助科研通管家采纳,获得30
8秒前
华仔应助科研通管家采纳,获得10
8秒前
Zx_1993应助科研通管家采纳,获得70
8秒前
buno应助科研通管家采纳,获得10
8秒前
8秒前
酷波er应助科研通管家采纳,获得10
8秒前
子车茗应助科研通管家采纳,获得30
8秒前
涵青夏完成签到,获得积分10
8秒前
Linos应助科研通管家采纳,获得10
8秒前
NexusExplorer应助科研通管家采纳,获得10
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Pharmacology for Chemists: Drug Discovery in Context 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5608504
求助须知:如何正确求助?哪些是违规求助? 4693127
关于积分的说明 14876947
捐赠科研通 4717761
什么是DOI,文献DOI怎么找? 2544250
邀请新用户注册赠送积分活动 1509316
关于科研通互助平台的介绍 1472836