Influential Spreaders Identification in Complex Networks With TOPSIS and K-Shell Decomposition

中心性 托普西斯 水准点(测量) 节点(物理) 分解法(排队论) 复杂网络 计算机科学 相似性(几何) 分解 数据挖掘 算法 数学 人工智能 工程类 统计 运筹学 地理 生物 万维网 图像(数学) 结构工程 生态学 大地测量学
作者
Xiaoyang Liu,Shu Ye,Giacomo Fiumara,Pasquale De Meo
出处
期刊:IEEE Transactions on Computational Social Systems [Institute of Electrical and Electronics Engineers]
卷期号:10 (1): 347-361 被引量:20
标识
DOI:10.1109/tcss.2022.3148778
摘要

In view that the K-shell decomposition method can only effectively identify a single most influential node, but cannot accurately identify a group of most influential nodes, this article proposes a hybrid method based on K-shell decomposition to identify the most influential spreaders in complex networks. First, the K-shell decomposition method is used to decompose the network, and the network is regarded as a hierarchical structure from the inner core to the periphery core. Second, the existing centrality methods such as H-index are used as the secondary score of the proposed method to select nodes in each hierarchy of the network. In addition, for the sake of alleviating the overlapping problem, the Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS) method is introduced to calculate the comprehensive score of secondary score and overlapping range, and the node with the highest comprehensive score will be selected in each round. The proposed algorithm can be used as a general framework to improve the existing centrality method which can represent nodes with definite values of centrality. Experimental results show that in the susceptible–infected–recovered (SIR) model experiment, compared with the benchmark methods, the infection scale of the proposed K-TOPSIS method in nine real networks is improved by 1.15%, 2.23%, 1.95%, 3.12%, 6.29%, −0.37%, 4.01%, 0.48%, and 0.48%, respectively. The novel method is improved by 0.44, 1.18, 1.16, 11.30, 2.03, 2.53, 2.70, and 2.13 in average shortest path length experiment, respectively, except for Facebook network. It shows that the novel method is reasonable and effective.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
hy完成签到,获得积分10
刚刚
脑洞疼应助monster采纳,获得10
1秒前
Criminology34应助饱满的问丝采纳,获得10
2秒前
2秒前
3秒前
4秒前
4秒前
zsyhcl完成签到,获得积分10
6秒前
量子星尘发布了新的文献求助10
6秒前
壮观的冰双完成签到,获得积分10
6秒前
正直尔白完成签到,获得积分10
7秒前
平淡的小刺猬完成签到,获得积分10
7秒前
8秒前
NY完成签到,获得积分10
8秒前
CNS天天有发布了新的文献求助10
8秒前
冬日空虚完成签到,获得积分20
8秒前
zmy发布了新的文献求助10
8秒前
一只CY完成签到,获得积分10
10秒前
10秒前
11秒前
WUT完成签到,获得积分10
12秒前
田様应助科研通管家采纳,获得10
12秒前
共享精神应助科研通管家采纳,获得10
12秒前
学习发布了新的文献求助10
12秒前
情怀应助科研通管家采纳,获得10
12秒前
Harry应助科研通管家采纳,获得10
12秒前
13秒前
星辰大海应助科研通管家采纳,获得30
13秒前
阿腾发布了新的文献求助10
13秒前
Wind应助科研通管家采纳,获得10
13秒前
彭于晏应助科研通管家采纳,获得10
13秒前
minkuuuuuuu应助科研通管家采纳,获得10
13秒前
科研通AI6应助科研通管家采纳,获得30
13秒前
Harry应助科研通管家采纳,获得10
13秒前
13秒前
英姑应助科研通管家采纳,获得10
13秒前
桐桐应助科研通管家采纳,获得10
13秒前
李爱国应助科研通管家采纳,获得10
13秒前
XDZ完成签到 ,获得积分10
13秒前
Harry应助科研通管家采纳,获得10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Scope of Slavic Aspect 600
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
Rousseau, le chemin de ronde 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5540103
求助须知:如何正确求助?哪些是违规求助? 4626748
关于积分的说明 14600653
捐赠科研通 4567718
什么是DOI,文献DOI怎么找? 2504136
邀请新用户注册赠送积分活动 1481880
关于科研通互助平台的介绍 1453487