Deep learning radiomics based on contrast-enhanced ultrasound images for assisted diagnosis of pancreatic ductal adenocarcinoma and chronic pancreatitis

医学 胰腺导管腺癌 无线电技术 胰腺炎 放射科 队列 医学诊断 超声造影 活检 超声波 曲线下面积 回顾性队列研究 胰腺癌 内科学 癌症
作者
Tong Tong,Jionghui Gu,Dong Xu,Ling Song,Qiyu Zhao,Cheng Fang,Zhiqiang Yuan,Shuyuan Tian,Xin Yang,Jie Tian,Kun Wang,Tianan Jiang
出处
期刊:BMC Medicine [BioMed Central]
卷期号:20 (1) 被引量:40
标识
DOI:10.1186/s12916-022-02258-8
摘要

Accurate and non-invasive diagnosis of pancreatic ductal adenocarcinoma (PDAC) and chronic pancreatitis (CP) can avoid unnecessary puncture and surgery. This study aimed to develop a deep learning radiomics (DLR) model based on contrast-enhanced ultrasound (CEUS) images to assist radiologists in identifying PDAC and CP.Patients with PDAC or CP were retrospectively enrolled from three hospitals. Detailed clinicopathological data were collected for each patient. Diagnoses were confirmed pathologically using biopsy or surgery in all patients. We developed an end-to-end DLR model for diagnosing PDAC and CP using CEUS images. To verify the clinical application value of the DLR model, two rounds of reader studies were performed.A total of 558 patients with pancreatic lesions were enrolled and were split into the training cohort (n=351), internal validation cohort (n=109), and external validation cohorts 1 (n=50) and 2 (n=48). The DLR model achieved an area under curve (AUC) of 0.986 (95% CI 0.975-0.994), 0.978 (95% CI 0.950-0.996), 0.967 (95% CI 0.917-1.000), and 0.953 (95% CI 0.877-1.000) in the training, internal validation, and external validation cohorts 1 and 2, respectively. The sensitivity and specificity of the DLR model were higher than or comparable to the diagnoses of the five radiologists in the three validation cohorts. With the aid of the DLR model, the diagnostic sensitivity of all radiologists was further improved at the expense of a small or no decrease in specificity in the three validation cohorts.The findings of this study suggest that our DLR model can be used as an effective tool to assist radiologists in the diagnosis of PDAC and CP.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Yang发布了新的文献求助10
刚刚
脆啵啵马克宝完成签到,获得积分10
1秒前
Manzia完成签到,获得积分10
1秒前
zq发布了新的文献求助10
1秒前
852应助彪壮的青雪采纳,获得10
2秒前
3秒前
3秒前
5秒前
5秒前
6秒前
7秒前
曾无忧发布了新的文献求助10
7秒前
star发布了新的文献求助10
7秒前
丁丁完成签到 ,获得积分10
7秒前
着急的青枫应助NNUsusan采纳,获得20
7秒前
科研混子发布了新的文献求助10
8秒前
zq完成签到,获得积分10
8秒前
9秒前
9秒前
123完成签到,获得积分10
9秒前
香草哥完成签到,获得积分10
10秒前
12秒前
嘎嘎关注了科研通微信公众号
12秒前
13秒前
量子星尘发布了新的文献求助150
13秒前
刻苦秋烟发布了新的文献求助10
16秒前
Akim应助肥弹弹采纳,获得10
16秒前
方伟达完成签到,获得积分10
17秒前
鲤跃发布了新的文献求助10
18秒前
情怀应助临界采纳,获得10
18秒前
18秒前
打打应助故意的小熊猫采纳,获得10
19秒前
21秒前
文章大发发布了新的文献求助10
22秒前
23秒前
浮游应助Yang采纳,获得10
24秒前
24秒前
Afei完成签到,获得积分10
25秒前
科研通AI6应助鲤跃采纳,获得10
27秒前
谭凯文完成签到,获得积分10
27秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
解放军总医院眼科医学部病例精解 1000
温州医科大学附属眼视光医院斜弱视与双眼视病例精解 1000
Zur lokalen Geoidbestimmung aus terrestrischen Messungen vertikaler Schweregradienten 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 500
translating meaning 500
Storie e culture della televisione 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4896403
求助须知:如何正确求助?哪些是违规求助? 4178074
关于积分的说明 12969799
捐赠科研通 3941347
什么是DOI,文献DOI怎么找? 2162226
邀请新用户注册赠送积分活动 1180680
关于科研通互助平台的介绍 1086242