Deep learning radiomics based on contrast-enhanced ultrasound images for assisted diagnosis of pancreatic ductal adenocarcinoma and chronic pancreatitis

医学 胰腺导管腺癌 无线电技术 胰腺炎 放射科 队列 医学诊断 超声造影 活检 超声波 曲线下面积 回顾性队列研究 胰腺癌 内科学 癌症
作者
Tong Tong,Jionghui Gu,Dong Xu,Ling Song,Qiyu Zhao,Cheng Fang,Zhiqiang Yuan,Shuyuan Tian,Xin Yang,Jie Tian,Kun Wang,Tianan Jiang
出处
期刊:BMC Medicine [Springer Nature]
卷期号:20 (1) 被引量:37
标识
DOI:10.1186/s12916-022-02258-8
摘要

Accurate and non-invasive diagnosis of pancreatic ductal adenocarcinoma (PDAC) and chronic pancreatitis (CP) can avoid unnecessary puncture and surgery. This study aimed to develop a deep learning radiomics (DLR) model based on contrast-enhanced ultrasound (CEUS) images to assist radiologists in identifying PDAC and CP.Patients with PDAC or CP were retrospectively enrolled from three hospitals. Detailed clinicopathological data were collected for each patient. Diagnoses were confirmed pathologically using biopsy or surgery in all patients. We developed an end-to-end DLR model for diagnosing PDAC and CP using CEUS images. To verify the clinical application value of the DLR model, two rounds of reader studies were performed.A total of 558 patients with pancreatic lesions were enrolled and were split into the training cohort (n=351), internal validation cohort (n=109), and external validation cohorts 1 (n=50) and 2 (n=48). The DLR model achieved an area under curve (AUC) of 0.986 (95% CI 0.975-0.994), 0.978 (95% CI 0.950-0.996), 0.967 (95% CI 0.917-1.000), and 0.953 (95% CI 0.877-1.000) in the training, internal validation, and external validation cohorts 1 and 2, respectively. The sensitivity and specificity of the DLR model were higher than or comparable to the diagnoses of the five radiologists in the three validation cohorts. With the aid of the DLR model, the diagnostic sensitivity of all radiologists was further improved at the expense of a small or no decrease in specificity in the three validation cohorts.The findings of this study suggest that our DLR model can be used as an effective tool to assist radiologists in the diagnosis of PDAC and CP.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
宓之云发布了新的文献求助10
1秒前
1秒前
23xyke完成签到,获得积分10
1秒前
kushdw完成签到,获得积分10
2秒前
安慕希完成签到,获得积分10
2秒前
传奇3应助U9A采纳,获得200
3秒前
共享精神应助tan采纳,获得10
3秒前
深情安青应助2h采纳,获得10
4秒前
bkagyin应助guozizi采纳,获得10
6秒前
朵朵完成签到,获得积分10
7秒前
无名老大应助rachel-yue采纳,获得50
7秒前
veryao完成签到,获得积分10
8秒前
听说发布了新的文献求助10
8秒前
思源应助梦初醒处采纳,获得10
9秒前
9秒前
wsgdhz发布了新的文献求助10
9秒前
9秒前
顾矜应助小白采纳,获得10
10秒前
可乐完成签到,获得积分10
10秒前
11秒前
pluto应助RoadWatcher采纳,获得30
12秒前
xiaozhao发布了新的文献求助10
12秒前
13秒前
ddaizi发布了新的文献求助10
14秒前
浓缩蓝鲸发布了新的文献求助10
14秒前
16秒前
16秒前
16秒前
黄垚发布了新的文献求助10
16秒前
dyfsj发布了新的文献求助10
17秒前
善学以致用应助郁金香采纳,获得10
17秒前
U9A发布了新的文献求助200
17秒前
ttracc完成签到 ,获得积分10
18秒前
激动的依波完成签到,获得积分10
18秒前
科研小白发布了新的文献求助10
18秒前
18秒前
NUNKI完成签到,获得积分10
19秒前
19秒前
20秒前
20秒前
高分求助中
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger Heßler, Claudia, Rud 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 1000
Natural History of Mantodea 螳螂的自然史 1000
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 500
Spatial Political Economy: Uneven Development and the Production of Nature in Chile 400
山海经图录 李云中版 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3328053
求助须知:如何正确求助?哪些是违规求助? 2958192
关于积分的说明 8589449
捐赠科研通 2636443
什么是DOI,文献DOI怎么找? 1442995
科研通“疑难数据库(出版商)”最低求助积分说明 668470
邀请新用户注册赠送积分活动 655696