An Improved Bearing Fault Diagnosis Method using One-Dimensional CNN and LSTM

计算机科学 断层(地质) 人工智能 模式识别(心理学) 方位(导航) 计算机视觉 地质学 地震学
作者
Honghu Pan,Fan Hong-hu,Pan He,Sai Tang,Fanming Meng
出处
期刊:Strojniški vestnik [University of Ljubljana]
被引量:155
标识
DOI:10.5545/sv-jme.2018.5249
摘要

As one of the most critical components in rotating machinery, bearing fault diagnosis has attracted many researchers' attention.The traditional methods for bearing fault diagnosis normally requires three steps, including data pre-processing, feature extraction and pattern classification, which require much expertise and experience.This paper takes advantage of deep learning algorithms and proposes an improved bearing fault diagnosis method based on a convolutional neural network (CNN) and a long-short-term memory (LSTM) recurrent neural network whose input is the raw sampling signal without any pre-processing or traditional feature extraction.The CNN is frequently used in image classification as it could extract features automatically from high-dimensional data, while LSTM is most applied in speech recognition as it considers time coherence.This paper combined one-dimensional CNN and LSTM into one unified structure by using the CNN's output as input to the LSTM to identify the bearing fault types.First, a part of raw bearing signal data is used as the training dataset in the model, and the simulation ends when the number of iterations reaches a specific value.Second, the rest of the signal data was input in the trained model as the testing dataset to verify the effectiveness of the proposed method.The results show that the average accuracy rate in the testing dataset of this proposed method reaches more than 99 %, which outperforms other algorithms for bearing fault diagnosis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wenxiao发布了新的文献求助10
1秒前
JamesPei应助Heidi采纳,获得10
1秒前
顾矜应助付晓龙采纳,获得30
3秒前
3秒前
4秒前
天天快乐应助科研通管家采纳,获得10
4秒前
上官若男应助Ruby采纳,获得10
4秒前
CipherSage应助科研通管家采纳,获得10
4秒前
4秒前
caicai应助科研通管家采纳,获得10
4秒前
田様应助科研通管家采纳,获得10
4秒前
大个应助科研通管家采纳,获得10
4秒前
彭于晏应助科研通管家采纳,获得200
4秒前
科研通AI5应助科研通管家采纳,获得10
4秒前
4秒前
所所应助科研通管家采纳,获得10
4秒前
Lucas应助科研通管家采纳,获得10
4秒前
Lucas应助科研通管家采纳,获得10
4秒前
JamesPei应助科研通管家采纳,获得10
4秒前
5秒前
5秒前
CodeCraft应助科研通管家采纳,获得10
5秒前
今后应助科研通管家采纳,获得10
5秒前
5秒前
科研通AI5应助科研通管家采纳,获得10
5秒前
5秒前
5秒前
小机灵发布了新的文献求助10
5秒前
淡定幻儿发布了新的文献求助10
5秒前
5秒前
21完成签到 ,获得积分10
6秒前
7秒前
Jasper应助kk采纳,获得10
8秒前
快乐战神没烦恼完成签到,获得积分10
9秒前
9秒前
10秒前
mengyijie完成签到,获得积分20
11秒前
11发布了新的文献求助10
13秒前
15秒前
dxs发布了新的文献求助10
16秒前
高分求助中
All the Birds of the World 1000
IZELTABART TAPATANSINE 500
Armour of the english knight 1400-1450 300
Handbook of Laboratory Animal Science 300
Not Equal : Towards an International Law of Finance 260
Beginners Guide To Clinical Medicine (Pb 2020): A Systematic Guide To Clinical Medicine, Two-Vol Set 250
A method for calculating the flow in a centrifugal impeller when entropy gradients are present 240
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3714504
求助须知:如何正确求助?哪些是违规求助? 3261863
关于积分的说明 9921197
捐赠科研通 2975631
什么是DOI,文献DOI怎么找? 1631705
邀请新用户注册赠送积分活动 774142
科研通“疑难数据库(出版商)”最低求助积分说明 744697