Cancer MiRNA biomarker classification based on Improved Generative Adversarial Network optimized with Mayfly Optimization Algorithm

人工智能 计算机科学 深度学习 卷积神经网络 机器学习 模式识别(心理学)
作者
G. Tamilmani,V. Brindha Devi,T. Sujithra,Francis H. Shajin,P. Rajesh
出处
期刊:Biomedical Signal Processing and Control [Elsevier]
卷期号:75: 103545-103545 被引量:9
标识
DOI:10.1016/j.bspc.2022.103545
摘要

Nowadays, cancer diagnosis becomes a paradigm shift by incorporating molecular biomarkers as part of a routine diagnostic panel. Ranges of molecular changes include DNA, RNA, micro RNA (miRNAs) and proteins. In recent years, deep learning based methods have been more inspired to health researcher’s regarding the performance of cancer diagnosis. The application of deep learning-based approach gradually becomes clearer in classification accuracy for a problem that separates data related to cancer survival. In this manuscript, an Improved Generative Adversarial Network optimized with Mayfly Optimization Algorithm is proposed to overcome the super class issues. Improved Generative Adversarial Network is the combination of deep convolutional generative adversarial network (DCG) and modified convolutional neural network (MCNN); hence it is called DCG-MCNN. Initially, the DCG is used to balance the dataset by creating more samples in the training dataset. Based on the training dataset, cancer miRNA biomarker classification is improved with the help of modified CNN diagnosis model. The proposed method is activated in python, moreover, its efficiency is analyzed with Cancer Genome Atlas dataset. Here, performance metrics, viz accuracy, sensitivity, specificity, precision, F-measure balanced error rate are calculated. The experimental results of the proposed method shows higher accuracy 99.26%, higher sensitivity 95.23%, higher specificity 92.56% compared with the existing methods, like Validation of miRNAs as breast cancer biomarkers with a machine learning approach (CMiRNA-BC-RF-SVM), Cancer miRNA biomarkers classification using a new representation algorithm and evolutionary deep learning (CMiRNA-BC-CNN) and multi-omics data using graph convolutional networks allowing patient classification and biomarker identification (CMiRNA-BC-GCNN).

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
JinwenShi完成签到,获得积分10
1秒前
眼睛大白昼完成签到,获得积分10
1秒前
舒心的茗完成签到,获得积分10
2秒前
窦如花完成签到 ,获得积分10
2秒前
苗条铅笔发布了新的文献求助10
2秒前
2秒前
3秒前
爱科研的龙完成签到,获得积分10
3秒前
4秒前
Zero完成签到,获得积分10
4秒前
4秒前
香蕉觅云应助yang采纳,获得10
4秒前
科研小白完成签到,获得积分10
5秒前
兴奋不弱完成签到 ,获得积分10
5秒前
不要再忘登陆密码了完成签到,获得积分10
5秒前
科研通AI2S应助科研通管家采纳,获得10
5秒前
想飞的猪发布了新的文献求助10
5秒前
斯文败类应助科研通管家采纳,获得20
5秒前
FashionBoy应助努力毕业的瓜采纳,获得10
5秒前
NexusExplorer应助科研通管家采纳,获得10
5秒前
FashionBoy应助科研通管家采纳,获得10
5秒前
5秒前
今后应助科研通管家采纳,获得10
5秒前
5秒前
荡乎宇宙如虚舟完成签到,获得积分10
5秒前
害羞破茧发布了新的文献求助10
6秒前
cici0213完成签到 ,获得积分10
6秒前
可爱的函函应助BlingBling采纳,获得10
6秒前
7秒前
ZXW发布了新的文献求助50
7秒前
研友_ZeqAxZ完成签到,获得积分10
7秒前
8秒前
杨羕完成签到,获得积分10
10秒前
慕青应助坚定背包采纳,获得10
10秒前
CodeCraft应助淡定鸿涛采纳,获得10
10秒前
Ying完成签到,获得积分10
11秒前
坚定芷烟完成签到,获得积分10
11秒前
wqq完成签到 ,获得积分10
11秒前
传奇3应助李佳轩采纳,获得10
11秒前
高分求助中
Lire en communiste 1000
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 800
Becoming: An Introduction to Jung's Concept of Individuation 600
Communist propaganda: a fact book, 1957-1958 500
Briefe aus Shanghai 1946‒1952 (Dokumente eines Kulturschocks) 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3167375
求助须知:如何正确求助?哪些是违规求助? 2818893
关于积分的说明 7923236
捐赠科研通 2478710
什么是DOI,文献DOI怎么找? 1320438
科研通“疑难数据库(出版商)”最低求助积分说明 632803
版权声明 602443