已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Cancer MiRNA biomarker classification based on Improved Generative Adversarial Network optimized with Mayfly Optimization Algorithm

人工智能 计算机科学 深度学习 卷积神经网络 机器学习 模式识别(心理学)
作者
G. Tamilmani,V. Brindha Devi,T. Sujithra,Francis H. Shajin,P. Rajesh
出处
期刊:Biomedical Signal Processing and Control [Elsevier]
卷期号:75: 103545-103545 被引量:19
标识
DOI:10.1016/j.bspc.2022.103545
摘要

Nowadays, cancer diagnosis becomes a paradigm shift by incorporating molecular biomarkers as part of a routine diagnostic panel. Ranges of molecular changes include DNA, RNA, micro RNA (miRNAs) and proteins. In recent years, deep learning based methods have been more inspired to health researcher’s regarding the performance of cancer diagnosis. The application of deep learning-based approach gradually becomes clearer in classification accuracy for a problem that separates data related to cancer survival. In this manuscript, an Improved Generative Adversarial Network optimized with Mayfly Optimization Algorithm is proposed to overcome the super class issues. Improved Generative Adversarial Network is the combination of deep convolutional generative adversarial network (DCG) and modified convolutional neural network (MCNN); hence it is called DCG-MCNN. Initially, the DCG is used to balance the dataset by creating more samples in the training dataset. Based on the training dataset, cancer miRNA biomarker classification is improved with the help of modified CNN diagnosis model. The proposed method is activated in python, moreover, its efficiency is analyzed with Cancer Genome Atlas dataset. Here, performance metrics, viz accuracy, sensitivity, specificity, precision, F-measure balanced error rate are calculated. The experimental results of the proposed method shows higher accuracy 99.26%, higher sensitivity 95.23%, higher specificity 92.56% compared with the existing methods, like Validation of miRNAs as breast cancer biomarkers with a machine learning approach (CMiRNA-BC-RF-SVM), Cancer miRNA biomarkers classification using a new representation algorithm and evolutionary deep learning (CMiRNA-BC-CNN) and multi-omics data using graph convolutional networks allowing patient classification and biomarker identification (CMiRNA-BC-GCNN).

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
01259完成签到 ,获得积分10
1秒前
tong完成签到 ,获得积分10
2秒前
祁连山的熊猫完成签到 ,获得积分0
3秒前
yuanyuan发布了新的文献求助10
4秒前
莫春莹完成签到 ,获得积分10
4秒前
Vaseegara完成签到 ,获得积分10
4秒前
5秒前
xing完成签到,获得积分10
7秒前
9秒前
10秒前
Cmqq发布了新的文献求助10
10秒前
斯文败类应助111版采纳,获得10
12秒前
走走发布了新的文献求助10
13秒前
爱宁完成签到 ,获得积分10
14秒前
15秒前
neao完成签到 ,获得积分10
15秒前
16秒前
脸小呆呆发布了新的文献求助10
18秒前
sxb10101完成签到 ,获得积分10
18秒前
哇塞完成签到 ,获得积分10
21秒前
21秒前
oasis完成签到,获得积分10
21秒前
22秒前
奋斗机器猫完成签到 ,获得积分10
22秒前
flashunter发布了新的文献求助10
23秒前
武玉坤完成签到,获得积分10
24秒前
布同完成签到,获得积分0
25秒前
26秒前
ahaaa完成签到 ,获得积分10
27秒前
DGYT7786完成签到 ,获得积分10
27秒前
小白发布了新的文献求助10
27秒前
搜集达人应助从容的翼采纳,获得10
27秒前
李健应助安详的中心采纳,获得10
28秒前
yyd完成签到,获得积分10
29秒前
dengdengdeng完成签到 ,获得积分10
30秒前
30秒前
贪吃的哦润吉完成签到 ,获得积分10
30秒前
空军完成签到 ,获得积分10
31秒前
32秒前
尘远知山静完成签到 ,获得积分10
33秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Mechanics of Solids with Applications to Thin Bodies 5000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5599529
求助须知:如何正确求助?哪些是违规求助? 4685197
关于积分的说明 14838182
捐赠科研通 4668952
什么是DOI,文献DOI怎么找? 2538068
邀请新用户注册赠送积分活动 1505447
关于科研通互助平台的介绍 1470816