Cancer MiRNA biomarker classification based on Improved Generative Adversarial Network optimized with Mayfly Optimization Algorithm

人工智能 计算机科学 深度学习 卷积神经网络 机器学习 模式识别(心理学)
作者
G. Tamilmani,V. Brindha Devi,T. Sujithra,Francis H. Shajin,P. Rajesh
出处
期刊:Biomedical Signal Processing and Control [Elsevier BV]
卷期号:75: 103545-103545 被引量:19
标识
DOI:10.1016/j.bspc.2022.103545
摘要

Nowadays, cancer diagnosis becomes a paradigm shift by incorporating molecular biomarkers as part of a routine diagnostic panel. Ranges of molecular changes include DNA, RNA, micro RNA (miRNAs) and proteins. In recent years, deep learning based methods have been more inspired to health researcher’s regarding the performance of cancer diagnosis. The application of deep learning-based approach gradually becomes clearer in classification accuracy for a problem that separates data related to cancer survival. In this manuscript, an Improved Generative Adversarial Network optimized with Mayfly Optimization Algorithm is proposed to overcome the super class issues. Improved Generative Adversarial Network is the combination of deep convolutional generative adversarial network (DCG) and modified convolutional neural network (MCNN); hence it is called DCG-MCNN. Initially, the DCG is used to balance the dataset by creating more samples in the training dataset. Based on the training dataset, cancer miRNA biomarker classification is improved with the help of modified CNN diagnosis model. The proposed method is activated in python, moreover, its efficiency is analyzed with Cancer Genome Atlas dataset. Here, performance metrics, viz accuracy, sensitivity, specificity, precision, F-measure balanced error rate are calculated. The experimental results of the proposed method shows higher accuracy 99.26%, higher sensitivity 95.23%, higher specificity 92.56% compared with the existing methods, like Validation of miRNAs as breast cancer biomarkers with a machine learning approach (CMiRNA-BC-RF-SVM), Cancer miRNA biomarkers classification using a new representation algorithm and evolutionary deep learning (CMiRNA-BC-CNN) and multi-omics data using graph convolutional networks allowing patient classification and biomarker identification (CMiRNA-BC-GCNN).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
安静一曲完成签到 ,获得积分10
3秒前
阿月完成签到,获得积分10
3秒前
跳跃虔发布了新的文献求助10
3秒前
开放的煎蛋完成签到,获得积分20
3秒前
弯弯完成签到,获得积分10
4秒前
mz完成签到 ,获得积分10
5秒前
8秒前
小党完成签到,获得积分10
10秒前
量子星尘发布了新的文献求助10
10秒前
鸿俦鹤侣完成签到,获得积分10
10秒前
10秒前
Liufgui应助xinyue946983采纳,获得10
12秒前
12秒前
跳跃虔完成签到,获得积分20
12秒前
Liufgui应助Mandy采纳,获得10
13秒前
13秒前
duduguai发布了新的文献求助20
14秒前
李健应助yun采纳,获得10
16秒前
ZJY发布了新的文献求助10
17秒前
22关注了科研通微信公众号
19秒前
20秒前
20秒前
英姑应助ZJY采纳,获得10
21秒前
小蘑菇应助hhhh采纳,获得30
24秒前
听话的惜梦完成签到,获得积分10
27秒前
cherry bomb完成签到,获得积分10
27秒前
28秒前
30秒前
进步发布了新的文献求助10
31秒前
克林沙星完成签到,获得积分10
32秒前
32秒前
35秒前
李健的小迷弟应助十一采纳,获得10
36秒前
黄耀完成签到,获得积分10
37秒前
37秒前
多情含灵发布了新的文献求助10
38秒前
flow完成签到,获得积分10
40秒前
Kelsey完成签到 ,获得积分10
40秒前
湛湛发布了新的文献求助10
41秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3988975
求助须知:如何正确求助?哪些是违规求助? 3531316
关于积分的说明 11253424
捐赠科研通 3269917
什么是DOI,文献DOI怎么找? 1804830
邀请新用户注册赠送积分活动 882063
科研通“疑难数据库(出版商)”最低求助积分说明 809068