已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Novel optimized crow search algorithm for feature selection

可解释性 特征选择 特征(语言学) 计算机科学 公制(单位) 还原(数学) 算法 选择(遗传算法) 人工智能 搜索算法 模式识别(心理学) 数据挖掘 机器学习 数学 哲学 语言学 经济 运营管理 几何学
作者
Behrouz Samieiyan,Poorya MohammadiNasab,Mostafa Abbas Mollaei,Fahimeh Hajizadeh,Mohammad Reza Kangavari
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:204: 117486-117486 被引量:24
标识
DOI:10.1016/j.eswa.2022.117486
摘要

Feature selection techniques have been presented to allow us to choose a small subset of the original components' relevant features by removing irrelevant or redundant features. Feature selection is essential for many reasons such as simplification, performance, computational efficiency, and quality interpretability. Owing to the importance mentioned above, many researchers have proposed and developed many algorithms to solve the feature selection problem. Although these approaches produce useful results, they possess some shortcomings like inadequate feature reduction. In this paper, a novel feature selection algorithm based on the crow search algorithm is presented. The algorithm uses dynamic awareness probability to keep the balance between the local and global search processes. Moreover, a novel neighborhood assigning strategy has been introduced to optimize the local search. Considering the best-selected features in each iteration helps attain more benefits in global search. The main superiority of the proposed algorithm is the significant feature reduction along with retaining the accuracy. Compared to enhanced crow search algorithm, the proposed algorithm has improved the feature reduction metric and fitness metric by 27.12% and 5.16%, respectively, while losing the accuracy metric by only 0.53%. Several popular UCI datasets have been employed to evaluate the proposed feature selection algorithm. The experimental results show that the proposed algorithm outperformed other feature selection algorithms in state-of-the-art related works regarding feature reduction and accuracy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
深情安青应助echoMe采纳,获得10
刚刚
刚刚
西瓜完成签到 ,获得积分10
2秒前
祎橘发布了新的文献求助10
2秒前
5秒前
6秒前
7秒前
wg言关注了科研通微信公众号
7秒前
研友_VZG7GZ应助璇子采纳,获得10
9秒前
金平卢仙发布了新的文献求助10
10秒前
小吴同学完成签到,获得积分10
11秒前
14秒前
顺心凡之完成签到,获得积分10
15秒前
Xieyusen完成签到,获得积分10
16秒前
weiminghao完成签到,获得积分10
18秒前
22秒前
香蕉觅云应助樊柔采纳,获得10
22秒前
22秒前
23秒前
23秒前
25秒前
firedouble发布了新的文献求助10
26秒前
27秒前
Promise发布了新的文献求助10
27秒前
28秒前
祎橘完成签到 ,获得积分10
30秒前
31秒前
niubing发布了新的文献求助10
32秒前
南桑发布了新的文献求助10
32秒前
33秒前
liuynnn发布了新的文献求助10
34秒前
Lee发布了新的文献求助10
36秒前
melo发布了新的文献求助10
36秒前
尼古丁的味道完成签到 ,获得积分10
36秒前
菜菜蔡儿发布了新的文献求助10
38秒前
王洋完成签到 ,获得积分10
41秒前
lizhoukan1完成签到,获得积分10
41秒前
41秒前
科研通AI5应助南桑采纳,获得10
42秒前
星期八发布了新的文献求助10
42秒前
高分求助中
Drug Prescribing in Renal Failure: Dosing Guidelines for Adults and Children 5th Edition 2000
IZELTABART TAPATANSINE 500
Where and how to use plate heat exchangers 500
Seven new species of the Palaearctic Lauxaniidae and Asteiidae (Diptera) 400
Armour of the english knight 1400-1450 300
Handbook of Laboratory Animal Science 300
Not Equal : Towards an International Law of Finance 260
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3712684
求助须知:如何正确求助?哪些是违规求助? 3260800
关于积分的说明 9915101
捐赠科研通 2974358
什么是DOI,文献DOI怎么找? 1630898
邀请新用户注册赠送积分活动 773751
科研通“疑难数据库(出版商)”最低求助积分说明 744404