计算机科学
组分(热力学)
水位下降(水文)
二元分类
图层(电子)
二进制数
滤波器(信号处理)
夏普比率
基础(拓扑)
人工智能
机器学习
情报检索
数据挖掘
数学
支持向量机
算术
文件夹
数学分析
化学
物理
岩土工程
有机化学
含水层
金融经济学
地下水
经济
计算机视觉
热力学
工程类
作者
Jacques Francois Joubert
出处
期刊:The journal of financial data science
[Pageant Media US]
日期:2022-06-23
卷期号:4 (3): 31-44
标识
DOI:10.3905/jfds.2022.1.098
摘要
Meta-labeling is a machine learning (ML) layer that sits on top of a base primary strategy to help size positions, filter out false-positive signals, and improve metrics such as the Sharpe ratio and maximum drawdown. This article consolidates the knowledge of several publications into a single work, providing practitioners with a clear framework to support the application of meta-labeling to investment strategies. The relationships between binary classification metrics and strategy performance are explained, alongside answers to many frequently asked questions regarding the technique. The author also deconstructs meta-labeling into three components, using a controlled experiment to show how each component helps to improve strategy metrics and what types of features should be considered in the model specification phase.
科研通智能强力驱动
Strongly Powered by AbleSci AI