Machine Learning Prediction of Structure‐Performance Relationship in Organic Synthesis

化学 有机合成 启发式 人工智能 区域选择性 机器学习 反应性(心理学) 生化工程 计算机科学 催化作用 有机化学 医学 替代医学 病理 工程类 操作系统
作者
Li‐Cheng Yang,Lu‐Jing Zhu,Shuo‐Qing Zhang,Xin Hong
出处
期刊:Chinese Journal of Chemistry [Wiley]
卷期号:40 (17): 2106-2117 被引量:8
标识
DOI:10.1002/cjoc.202200039
摘要

Comprehensive Summary Data‐driven approach has emerged as a powerful strategy in the construction of structure‐performance relationships in organic synthesis. To close the gap between mechanistic understanding and synthetic prediction, we have made efforts to implement mechanistic knowledge in machine learning modelling of organic transformation, as a way to achieve accurate predictions of reactivity, regio‐ and stereoselectivity. We have constructed a comprehensive and balanced computational database for target radical transformations (arene C—H functionalization and HAT reaction), which laid the foundation for the reactivity and selectivity prediction. Furthermore, we found that the combination of computational statistics and physical organic descriptors offers a practical solution to build machine learning structure‐performance models for reactivity and regioselectivity. To allow machine learning modelling of stereoselectivity, a structured database of asymmetric hydrogenation of olefins was built, and we designed a chemical heuristics‐based hierarchical learning approach to effectively use the big data in the early stage of catalysis screening. Our studies reflect a tiny portion of the exciting developments of machine learning in organic chemistry. The synergy between mechanistic knowledge and machine learning will continue to generate a strong momentum to push the limit of reaction performance prediction in organic chemistry. How do you get into this specific field? Could you please share some experiences with our readers? Based on my study experience in Prof. Houk's lab and Prof. Nørskov's lab, my major idea since the beginning of my lab is to combine the key design principles of homogeneous catalysis (transition state model) and heterogeneous (scaling relationship) catalysis. This idea eventually evolved to our explorations of mechanism‐based machine learning in organic chemistry. How do you supervise your students? I try my best to give them enough space and freedom, so they can experience the joy in chemistry research. What are your hobbies? I enjoy science fiction movies and novels. What is the most important personality for scientific research? Chemistry has unlimited frontiers. Targeting a hardcore question, developing someone's own approach is the most important merit in fundamental scientific research. How do you keep balance between research and family? Work‐life balance is certainly one of the biggest challenges for junior faculty. I try to work in fragmented time, so I would be available for both my family and my students. Who influences you mostly in your life? My high‐school experience in Chemistry Olympiad has influenced me dramatically, which cultivated my independent learning ability to tackle new questions. This has helped me a lot throughout my career.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
研友_VZG7GZ应助稀罕你采纳,获得10
刚刚
2秒前
Aries完成签到,获得积分10
4秒前
4秒前
Pretrial完成签到 ,获得积分10
4秒前
Jocelyn7发布了新的文献求助10
5秒前
wmmm发布了新的文献求助10
5秒前
余笙发布了新的文献求助10
6秒前
充电宝应助冷傲迎梦采纳,获得10
6秒前
彭于晏应助qi采纳,获得30
6秒前
科研通AI2S应助shor0414采纳,获得10
6秒前
ponyy发布了新的文献求助30
7秒前
秋之月发布了新的文献求助10
8秒前
skier发布了新的文献求助10
9秒前
balabala完成签到,获得积分20
9秒前
隐形曼青应助kb采纳,获得10
10秒前
yanyan发布了新的文献求助10
12秒前
繁笙完成签到 ,获得积分10
12秒前
12秒前
无言完成签到 ,获得积分10
12秒前
NONO完成签到 ,获得积分10
13秒前
星辰大海应助TT采纳,获得10
13秒前
15秒前
康康完成签到,获得积分10
15秒前
Xv完成签到,获得积分0
15秒前
18秒前
18秒前
香蕉觅云应助zfzf0422采纳,获得10
18秒前
19秒前
19秒前
李健应助爱听歌的向日葵采纳,获得10
20秒前
今后应助科研通管家采纳,获得10
20秒前
科研通AI5应助科研通管家采纳,获得10
20秒前
科研通AI2S应助科研通管家采纳,获得10
20秒前
20秒前
20秒前
烟花应助科研通管家采纳,获得10
20秒前
科研通AI5应助科研通管家采纳,获得80
20秒前
所所应助科研通管家采纳,获得20
21秒前
科研通AI5应助科研通管家采纳,获得10
21秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527990
求助须知:如何正确求助?哪些是违规求助? 3108173
关于积分的说明 9287913
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540119
邀请新用户注册赠送积分活动 716941
科研通“疑难数据库(出版商)”最低求助积分说明 709824