已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Machine Learning Prediction of Structure‐Performance Relationship in Organic Synthesis

化学 有机合成 启发式 人工智能 区域选择性 机器学习 反应性(心理学) 生化工程 计算机科学 催化作用 有机化学 医学 替代医学 病理 工程类 操作系统
作者
Li‐Cheng Yang,Lu‐Jing Zhu,Shuo‐Qing Zhang,Xin Hong
出处
期刊:Chinese Journal of Chemistry [Wiley]
卷期号:40 (17): 2106-2117 被引量:9
标识
DOI:10.1002/cjoc.202200039
摘要

Comprehensive Summary Data‐driven approach has emerged as a powerful strategy in the construction of structure‐performance relationships in organic synthesis. To close the gap between mechanistic understanding and synthetic prediction, we have made efforts to implement mechanistic knowledge in machine learning modelling of organic transformation, as a way to achieve accurate predictions of reactivity, regio‐ and stereoselectivity. We have constructed a comprehensive and balanced computational database for target radical transformations (arene C—H functionalization and HAT reaction), which laid the foundation for the reactivity and selectivity prediction. Furthermore, we found that the combination of computational statistics and physical organic descriptors offers a practical solution to build machine learning structure‐performance models for reactivity and regioselectivity. To allow machine learning modelling of stereoselectivity, a structured database of asymmetric hydrogenation of olefins was built, and we designed a chemical heuristics‐based hierarchical learning approach to effectively use the big data in the early stage of catalysis screening. Our studies reflect a tiny portion of the exciting developments of machine learning in organic chemistry. The synergy between mechanistic knowledge and machine learning will continue to generate a strong momentum to push the limit of reaction performance prediction in organic chemistry. How do you get into this specific field? Could you please share some experiences with our readers? Based on my study experience in Prof. Houk's lab and Prof. Nørskov's lab, my major idea since the beginning of my lab is to combine the key design principles of homogeneous catalysis (transition state model) and heterogeneous (scaling relationship) catalysis. This idea eventually evolved to our explorations of mechanism‐based machine learning in organic chemistry. How do you supervise your students? I try my best to give them enough space and freedom, so they can experience the joy in chemistry research. What are your hobbies? I enjoy science fiction movies and novels. What is the most important personality for scientific research? Chemistry has unlimited frontiers. Targeting a hardcore question, developing someone's own approach is the most important merit in fundamental scientific research. How do you keep balance between research and family? Work‐life balance is certainly one of the biggest challenges for junior faculty. I try to work in fragmented time, so I would be available for both my family and my students. Who influences you mostly in your life? My high‐school experience in Chemistry Olympiad has influenced me dramatically, which cultivated my independent learning ability to tackle new questions. This has helped me a lot throughout my career.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
材料摆渡人完成签到 ,获得积分10
1秒前
tmxx发布了新的文献求助10
2秒前
糖果完成签到 ,获得积分10
2秒前
魏寒冰完成签到 ,获得积分10
3秒前
王先生完成签到 ,获得积分10
3秒前
swh发布了新的文献求助10
4秒前
友好的如霜完成签到 ,获得积分10
6秒前
喜悦的小土豆完成签到 ,获得积分10
7秒前
KDS发布了新的文献求助30
8秒前
李爱国应助swh采纳,获得10
8秒前
清新的音响完成签到 ,获得积分10
10秒前
英姑应助路路采纳,获得10
10秒前
iedq完成签到 ,获得积分10
10秒前
memory完成签到,获得积分10
11秒前
cxx完成签到 ,获得积分10
14秒前
15秒前
20秒前
20秒前
21秒前
Xiaokang完成签到,获得积分10
21秒前
21秒前
kdjm688完成签到,获得积分10
21秒前
朴素的如豹完成签到,获得积分10
21秒前
坚定灯泡发布了新的文献求助30
23秒前
23秒前
细腻的三德完成签到,获得积分20
23秒前
24秒前
Xiaokang发布了新的文献求助10
24秒前
安详向薇完成签到,获得积分10
27秒前
小杨完成签到,获得积分10
27秒前
wjj发布了新的文献求助10
30秒前
洋洋麻麻发布了新的文献求助10
30秒前
只如初完成签到 ,获得积分10
31秒前
高高菠萝完成签到 ,获得积分10
32秒前
孤独含蕾完成签到 ,获得积分10
32秒前
无与伦比完成签到 ,获得积分10
32秒前
华仔应助KDS采纳,获得30
33秒前
34秒前
Ss完成签到 ,获得积分10
35秒前
高山流水完成签到,获得积分10
36秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3956940
求助须知:如何正确求助?哪些是违规求助? 3502979
关于积分的说明 11110880
捐赠科研通 3233958
什么是DOI,文献DOI怎么找? 1787694
邀请新用户注册赠送积分活动 870713
科研通“疑难数据库(出版商)”最低求助积分说明 802234