Machine Learning Prediction of Structure‐Performance Relationship in Organic Synthesis

化学 有机合成 启发式 人工智能 区域选择性 机器学习 反应性(心理学) 生化工程 计算机科学 催化作用 有机化学 医学 替代医学 病理 工程类 操作系统
作者
Li‐Cheng Yang,Lu‐Jing Zhu,Shuo‐Qing Zhang,Xin Hong
出处
期刊:Chinese Journal of Chemistry [Wiley]
卷期号:40 (17): 2106-2117 被引量:8
标识
DOI:10.1002/cjoc.202200039
摘要

Comprehensive Summary Data‐driven approach has emerged as a powerful strategy in the construction of structure‐performance relationships in organic synthesis. To close the gap between mechanistic understanding and synthetic prediction, we have made efforts to implement mechanistic knowledge in machine learning modelling of organic transformation, as a way to achieve accurate predictions of reactivity, regio‐ and stereoselectivity. We have constructed a comprehensive and balanced computational database for target radical transformations (arene C—H functionalization and HAT reaction), which laid the foundation for the reactivity and selectivity prediction. Furthermore, we found that the combination of computational statistics and physical organic descriptors offers a practical solution to build machine learning structure‐performance models for reactivity and regioselectivity. To allow machine learning modelling of stereoselectivity, a structured database of asymmetric hydrogenation of olefins was built, and we designed a chemical heuristics‐based hierarchical learning approach to effectively use the big data in the early stage of catalysis screening. Our studies reflect a tiny portion of the exciting developments of machine learning in organic chemistry. The synergy between mechanistic knowledge and machine learning will continue to generate a strong momentum to push the limit of reaction performance prediction in organic chemistry. How do you get into this specific field? Could you please share some experiences with our readers? Based on my study experience in Prof. Houk's lab and Prof. Nørskov's lab, my major idea since the beginning of my lab is to combine the key design principles of homogeneous catalysis (transition state model) and heterogeneous (scaling relationship) catalysis. This idea eventually evolved to our explorations of mechanism‐based machine learning in organic chemistry. How do you supervise your students? I try my best to give them enough space and freedom, so they can experience the joy in chemistry research. What are your hobbies? I enjoy science fiction movies and novels. What is the most important personality for scientific research? Chemistry has unlimited frontiers. Targeting a hardcore question, developing someone's own approach is the most important merit in fundamental scientific research. How do you keep balance between research and family? Work‐life balance is certainly one of the biggest challenges for junior faculty. I try to work in fragmented time, so I would be available for both my family and my students. Who influences you mostly in your life? My high‐school experience in Chemistry Olympiad has influenced me dramatically, which cultivated my independent learning ability to tackle new questions. This has helped me a lot throughout my career.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
村长热爱美丽完成签到 ,获得积分10
1秒前
慕青应助鲤鱼寒荷采纳,获得10
2秒前
2秒前
乐正怡完成签到 ,获得积分0
2秒前
Monologue完成签到 ,获得积分10
3秒前
5秒前
jhih完成签到,获得积分10
5秒前
斯嘎尔说它想你了完成签到,获得积分10
6秒前
熊熊完成签到,获得积分10
8秒前
10秒前
Noah完成签到 ,获得积分10
10秒前
wdy完成签到,获得积分10
11秒前
YUKI发布了新的文献求助10
12秒前
15秒前
小油菜完成签到 ,获得积分10
15秒前
Jason李发布了新的文献求助10
18秒前
19秒前
gxqqqqqqq应助郝宝真采纳,获得10
20秒前
21秒前
大东东发布了新的文献求助10
21秒前
开心樱关注了科研通微信公众号
21秒前
reece发布了新的文献求助10
21秒前
wangsiyuan完成签到 ,获得积分10
22秒前
畅快芝麻完成签到,获得积分10
22秒前
小xy发布了新的文献求助10
22秒前
一一完成签到 ,获得积分10
23秒前
megan完成签到,获得积分10
24秒前
Singularity应助pentayouth采纳,获得10
25秒前
25秒前
鲤鱼寒荷发布了新的文献求助10
26秒前
27秒前
老中医完成签到,获得积分10
28秒前
随机子应助平常的静枫采纳,获得10
29秒前
传奇3应助pentayouth采纳,获得30
29秒前
mhq发布了新的文献求助10
30秒前
小曲完成签到 ,获得积分10
32秒前
恋雪发布了新的文献求助10
34秒前
虾米YYY完成签到,获得积分10
36秒前
小可完成签到 ,获得积分10
36秒前
36秒前
高分求助中
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
Die Gottesanbeterin: Mantis religiosa: 656 400
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3165402
求助须知:如何正确求助?哪些是违规求助? 2816464
关于积分的说明 7912816
捐赠科研通 2476057
什么是DOI,文献DOI怎么找? 1318641
科研通“疑难数据库(出版商)”最低求助积分说明 632179
版权声明 602388