材料科学
电介质
小型化
电容器
储能
脉冲功率
功率密度
无定形固体
电容感应
光电子学
电场
超短脉冲
纳米技术
凝聚态物理
工程物理
电压
电气工程
光学
热力学
激光器
功率(物理)
物理
化学
工程类
量子力学
有机化学
作者
Bingbing Yang,Yang Zhang,Hao Pan,Wenlong Si,Qinghua Zhang,Zhonghui Shen,Yong Yu,Shun Lan,Fanqi Meng,Yiqian Liu,Houbing Huang,Jiaqing He,Lin Gu,Shujun Zhang,Long‐Qing Chen,Jing Zhu,Ce‐Wen Nan,Yuanhua Lin
出处
期刊:Nature Materials
[Springer Nature]
日期:2022-06-06
卷期号:21 (9): 1074-1080
被引量:285
标识
DOI:10.1038/s41563-022-01274-6
摘要
Electrostatic dielectric capacitors are essential components in advanced electronic and electrical power systems due to their ultrafast charging/discharging speed and high power density. A major challenge, however, is how to improve their energy densities to effectuate the next-generation applications that demand miniaturization and integration. Here, we report a high-entropy stabilized Bi2Ti2O7-based dielectric film that exhibits an energy density as high as 182 J cm−3 with an efficiency of 78% at an electric field of 6.35 MV cm−1. Our results reveal that regulating the atomic configurational entropy introduces favourable and stable microstructural features, including lattice distorted nano-crystalline grains and a disordered amorphous-like phase, which enhances the breakdown strength and reduces the polarization switching hysteresis, thus synergistically contributing to the energy storage performance. This high-entropy approach is expected to be widely applicable for the development of high-performance dielectrics.
科研通智能强力驱动
Strongly Powered by AbleSci AI