Recurrent Neural Networks for Pavement Performance Forecasting: Review and Model Performance Comparison

循环神经网络 计算机科学 人工神经网络 集合(抽象数据类型) 机器学习 人工智能 现存分类群 深度学习 进化生物学 生物 程序设计语言
作者
Micah Mers,Zhongyu Yang,Yung‐An Hsieh,Yichang Tsai
出处
期刊:Transportation Research Record [SAGE]
卷期号:2677 (1): 610-624 被引量:17
标识
DOI:10.1177/03611981221100521
摘要

Accurate pavement performance forecasting is critical in supporting transportation agencies’ predictive maintenance strategies: programs that prolong pavement service life while using fewer resources. However, because of the complex nature of pavement deterioration, high accuracy for long-term and project-level pavement performance forecasting is challenging to traditional models. Therefore, researchers have taken advantage of machine learning (ML) technology to create more sophisticated models in recent years. However, there are no extant studies that compare different ML models on a singular, real-world, large-scale, and comprehensive pavement data set to evaluate their capability for pavement performance forecasting. Thus, the goal of this study is to critically evaluate ML models, such as multiple linear regression (MLR), fully connected neural network (FCNN), recurrent neural network (RNN), gated recurrent unit (GRU), long short-term memory (LSTM), and a hybrid LSTM-FCNN model, on Florida’s statewide, 31 year historical pavement data set. The results demonstrate that the RNN, GRU, LSTM, and LSTM-FCNN models perform significantly better than MLR and FCNN for predicting time-series pavement condition, with the LSTM-FCNN model performing the best. This result provides a valuable demonstration and recommendation to transportation agencies and researchers that RNN-based ML models are a promising direction to improve the accuracy of pavement performance forecasting.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
伊蕾娜完成签到 ,获得积分10
1秒前
被迫学习一百年完成签到,获得积分10
2秒前
3秒前
4秒前
4秒前
5秒前
啦啦啦发布了新的文献求助10
6秒前
7秒前
zzz发布了新的文献求助10
8秒前
8秒前
Lucas应助Qvby3采纳,获得30
8秒前
9秒前
悲凉的康乃馨完成签到,获得积分10
9秒前
XinX完成签到,获得积分10
9秒前
Lucas应助依霏采纳,获得10
9秒前
xun发布了新的文献求助10
9秒前
李健应助jorong采纳,获得30
10秒前
跨进行发布了新的文献求助10
10秒前
旺旺哥哥发布了新的文献求助10
11秒前
zty发布了新的文献求助10
11秒前
13秒前
狂野的山雁完成签到,获得积分10
13秒前
九思完成签到 ,获得积分10
14秒前
酷炫的毛巾应助威武凡旋采纳,获得10
14秒前
sisi发布了新的文献求助30
15秒前
doctor周发布了新的文献求助10
15秒前
pluto应助科研通管家采纳,获得50
15秒前
李爱国应助科研通管家采纳,获得10
15秒前
HCLonely应助科研通管家采纳,获得10
16秒前
汉堡包应助科研通管家采纳,获得10
16秒前
ding应助科研通管家采纳,获得10
16秒前
田様应助科研通管家采纳,获得10
16秒前
16秒前
m弟完成签到 ,获得积分10
16秒前
HCLonely应助科研通管家采纳,获得10
16秒前
彭于晏应助科研通管家采纳,获得10
16秒前
烟花应助科研通管家采纳,获得10
16秒前
欢呼老鼠完成签到,获得积分10
16秒前
ferrycake应助科研通管家采纳,获得20
16秒前
16秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 1800
Natural History of Mantodea 螳螂的自然史 1000
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
How Maoism Was Made: Reconstructing China, 1949-1965 800
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3313905
求助须知:如何正确求助?哪些是违规求助? 2946264
关于积分的说明 8529211
捐赠科研通 2621834
什么是DOI,文献DOI怎么找? 1434149
科研通“疑难数据库(出版商)”最低求助积分说明 665154
邀请新用户注册赠送积分活动 650738