Energy-Aware Device Scheduling for Joint Federated Learning in Edge-assisted Internet of Agriculture Things

计算机科学 边缘计算 GSM演进的增强数据速率 调度(生产过程) 边缘设备 分布式计算 能源消耗 稀缺 地铁列车时刻表 计算机网络 数学优化 人工智能 云计算 操作系统 生态学 数学 经济 生物 微观经济学
作者
Chong-Jen Yu,Shuaiqi Shen,Kuan Zhang,Hai Zhao,Yeyin Shi
标识
DOI:10.1109/wcnc51071.2022.9771547
摘要

Edge-assisted Internet of Agriculture Things (Edge-IoAT) connects massive smart devices managed by edge nodes to collect crop data for distributed computing, such as federated learning, to guide agricultural production. In Edge-IoAT, data are cooperatively collected by edge nodes and the server, i.e., vertically partitioned. In addition, sample size and distribution are different for edge nodes, i.e., horizontally partitioned. Existing federated learning frameworks are not applicable for Edge-IoAT because they do not consider both types of data partitioning simultaneously. Moreover, the excessive energy consumption may cause premature interruption of model training, and spectrum scarcity prevents a portion of edge nodes from communicating with the server. Given limited energy and communication resources, training accuracy relies on how to schedule devices. In this paper, we first propose a joint federated learning framework for Edge-IoAT to cope with both vertically and horizontally partitioned data. After that, we formulate an energy-aware device scheduling problem to assign communication resources to the optimal edge node subset for minimizing the global loss function. Then, we develop a greedy algorithm to find the optimal solution. Experiments in a Nebraska farm show that the proposed framework with energy-aware device scheduling achieves a fast convergence rate, low communication cost, and high modeling accuracy under resource constraints.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
开心发布了新的文献求助10
刚刚
刚刚
少年发布了新的文献求助10
1秒前
天天快乐应助阿毛采纳,获得10
1秒前
Jenny应助狂野的以珊采纳,获得10
1秒前
2秒前
2秒前
3秒前
4秒前
研友_LMNjkn发布了新的文献求助10
4秒前
ding应助科研通管家采纳,获得10
4秒前
NexusExplorer应助科研通管家采纳,获得10
4秒前
yizhiGao应助科研通管家采纳,获得10
4秒前
科研通AI5应助科研通管家采纳,获得10
4秒前
wanci应助科研通管家采纳,获得10
4秒前
华仔应助科研通管家采纳,获得10
4秒前
上官若男应助科研通管家采纳,获得10
4秒前
大模型应助科研通管家采纳,获得10
4秒前
pinging应助科研通管家采纳,获得10
5秒前
唠叨的月光完成签到,获得积分10
5秒前
大模型应助科研通管家采纳,获得10
5秒前
清爽老九应助科研通管家采纳,获得20
5秒前
科研通AI5应助科研通管家采纳,获得20
5秒前
5秒前
传奇3应助科研通管家采纳,获得10
5秒前
清爽老九应助科研通管家采纳,获得20
5秒前
英姑应助科研通管家采纳,获得30
5秒前
酷波er应助科研通管家采纳,获得10
5秒前
优雅苑睐完成签到,获得积分10
6秒前
善学以致用应助CD采纳,获得10
6秒前
无花果应助孙奕采纳,获得10
7秒前
7秒前
HYH发布了新的文献求助20
7秒前
Rinohalt发布了新的文献求助10
8秒前
8秒前
8秒前
8秒前
9秒前
领导范儿应助通~采纳,获得10
9秒前
9秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527884
求助须知:如何正确求助?哪些是违规求助? 3108006
关于积分的说明 9287444
捐赠科研通 2805757
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709794