Manipulating Hierarchical Orientation of Wet‐Spun Hybrid Fibers via Rheological Engineering for Zn‐Ion Fiber Batteries

材料科学 离子 纤维 方向(向量空间) 化学工程 流变学 纳米技术 复合材料 有机化学 几何学 数学 工程类 化学
作者
Xia Zhou,Shuo Li,Guiqing Wu,Yanyan Shao,Dongzi Yang,Jinrong Luo,Zhenyang Jiao,Jingyu Sun,Yuanlong Shao
出处
期刊:Advanced Materials [Wiley]
卷期号:34 (33) 被引量:44
标识
DOI:10.1002/adma.202203905
摘要

Wet-spinning is a promising strategy to fabricate fiber electrodes for real commercial fiber battery applications, according to its great compatibility with large-scale fiber production. However, engineering the rheological properties of the electrochemical active materials to accommodate the viscoelasticity or liquid crystalline requirements for continuous wet-spinning remains a daunting challenge. Here, with entropy-driven volume-exclusion effects, the rheological behavior of vanadium pentoxide (V2 O5 ) nanowire dispersions is regulated through introducing 2D graphene oxide (GO) flakes in an optimal ratio. By optimizing the viscoelasticity and liquid-crystalline behavior of the spinning dope, the wet-spun hybrid fibers display controlled hierarchical orientation. The wet-spun V2 O5 /rGO hybrid fiber with the optimal 10:1 mass fraction (V2 O5 /rGO10:1 ) exhibits a highly oriented nanoblock arrangement, enabling efficient Zn-ion migration and an excellent Zn-ion storage capacity of 486.03 mAh g-1 at 0.1 A g-1 . A half-meter long quasi-solid-state fiber Zn-ion battery is assembled with a polyacrylamide gel electrolyte and biocompatible Ecoflex encapsulation. The thus-derived fiber Zn-ion battery is integrated into a wearable self-powered system, incorporating a highly efficient GaAs solar cell, which delivers a record-high overall efficiency (9.80%) for flexible solar charging systems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
饭小心发布了新的文献求助10
1秒前
tanjianxin完成签到,获得积分10
1秒前
wanci应助帅玉玉采纳,获得10
1秒前
Ellie完成签到 ,获得积分10
1秒前
晴天完成签到 ,获得积分10
2秒前
123完成签到,获得积分10
2秒前
2秒前
EOFG0PW发布了新的文献求助10
3秒前
buno应助yug采纳,获得10
3秒前
hgh完成签到,获得积分10
3秒前
001关闭了001文献求助
4秒前
研友_VZG7GZ应助Fareth采纳,获得10
4秒前
5秒前
韭菜盒子发布了新的文献求助10
5秒前
5秒前
大意的安白完成签到,获得积分10
5秒前
5秒前
6秒前
6秒前
学术蟑螂完成签到,获得积分10
6秒前
6秒前
6秒前
兴奋冷松完成签到,获得积分10
7秒前
7秒前
7秒前
7秒前
7秒前
饭小心完成签到,获得积分20
7秒前
luodd完成签到 ,获得积分10
9秒前
研友_VZG7GZ应助EOFG0PW采纳,获得10
9秒前
小吴发布了新的文献求助10
9秒前
甜甜灵槐发布了新的文献求助10
10秒前
yyang发布了新的文献求助10
10秒前
10秒前
超级水壶发布了新的文献求助10
10秒前
manan发布了新的文献求助10
10秒前
10秒前
fxy完成签到 ,获得积分10
11秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527521
求助须知:如何正确求助?哪些是违规求助? 3107606
关于积分的说明 9286171
捐赠科研通 2805329
什么是DOI,文献DOI怎么找? 1539901
邀请新用户注册赠送积分活动 716827
科研通“疑难数据库(出版商)”最低求助积分说明 709740