ISNet: Towards Improving Separability for Remote Sensing Image Change Detection

计算机科学 判别式 边距(机器学习) 特征(语言学) 变更检测 语义学(计算机科学) 最大化 特征提取 人工智能 模式识别(心理学) 特征学习 频道(广播) 交叉口(航空) 遥感 机器学习 地质学 计算机网络 哲学 语言学 微观经济学 工程类 经济 程序设计语言 航空航天工程
作者
Gong Cheng,Guangxing Wang,Junwei Han
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:60: 1-11 被引量:81
标识
DOI:10.1109/tgrs.2022.3174276
摘要

Deep learning has substantially pushed forward remote sensing image change detection through extracting discriminative hierarchical features. However, as the increasingly high resolution remote sensing images have abundant spatial details but limited spectral information, the use of conventional backbone networks would give rise to blurry boundaries between different semantics among hierarchical features. This explains why most false alarms in the final predictions distribute around change boundaries. To alleviate the problem, we pay attention to feature refinement and propose deep learning networks that deliver improved separability (ISNet). Our ISNet reaps the advantages from two strategies applied to refining bi-temporal feature hierarchies: (i) margin maximization that clarifies the gap between changed and unchanged semantics, and (ii) targeted arrangement of attention mechanisms that directs the use of channel attention and spatial attention for highlighting semantic and positional information, respectively. Specifically, we insert channel attention modules into share-weighted backbone networks to facilitate semantic-specific feature extraction. The semantic boundaries in the extracted bi-temporal hierarchical features are then clarified by margin maximization modules, followed by spatial attention modules to enhance positional change responses. A top-down fusion pathway makes the final refined features cover multi-scale representations and have strong separability for remote sensing image change detection. Extensive experimental evaluations demonstrate that our ISNet achieves state-of-the-art performance on the LEVIR-CD, SYSU-CD, and Season-Varying datasets, in terms of Overall Accuracy (OA), Intersection-of-Union (IoU), and F1 score. Code is available at https://github.com/xingronaldo/ISNet.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Dding发布了新的文献求助10
刚刚
bobo_mj完成签到,获得积分10
刚刚
刚刚
刚刚
1秒前
dmr发布了新的文献求助10
1秒前
箴言发布了新的文献求助30
1秒前
1秒前
2秒前
汤飞柏发布了新的文献求助10
2秒前
YCmf完成签到,获得积分10
2秒前
2秒前
2秒前
Duqianying发布了新的文献求助10
3秒前
3秒前
Lucas应助幸福的向彤采纳,获得10
3秒前
秀丽高跟鞋完成签到,获得积分10
3秒前
3秒前
4秒前
乐观的西装完成签到,获得积分10
4秒前
Brittany完成签到,获得积分10
4秒前
大模型应助bobo_mj采纳,获得10
4秒前
冯佳祥完成签到,获得积分10
5秒前
Lisiqi发布了新的文献求助30
5秒前
5秒前
5秒前
天天快乐应助dailj采纳,获得10
5秒前
5秒前
6秒前
dcfnb发布了新的文献求助10
6秒前
普通用户30号完成签到 ,获得积分10
6秒前
林中源发布了新的文献求助10
6秒前
7秒前
7秒前
yffffff发布了新的文献求助10
7秒前
还单身的香菇完成签到,获得积分10
8秒前
8秒前
8秒前
美好斓发布了新的文献求助10
8秒前
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1561
Binary Alloy Phase Diagrams, 2nd Edition 1200
Holistic Discourse Analysis 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
Using Genomics to Understand How Invaders May Adapt: A Marine Perspective 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5505852
求助须知:如何正确求助?哪些是违规求助? 4601404
关于积分的说明 14476173
捐赠科研通 4535332
什么是DOI,文献DOI怎么找? 2485305
邀请新用户注册赠送积分活动 1468307
关于科研通互助平台的介绍 1440779