亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

ISNet: Towards Improving Separability for Remote Sensing Image Change Detection

计算机科学 判别式 边距(机器学习) 特征(语言学) 变更检测 语义学(计算机科学) 最大化 特征提取 人工智能 模式识别(心理学) 特征学习 频道(广播) 交叉口(航空) 遥感 机器学习 地质学 计算机网络 哲学 语言学 微观经济学 工程类 经济 程序设计语言 航空航天工程
作者
Gong Cheng,Guangxing Wang,Junwei Han
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:60: 1-11 被引量:81
标识
DOI:10.1109/tgrs.2022.3174276
摘要

Deep learning has substantially pushed forward remote sensing image change detection through extracting discriminative hierarchical features. However, as the increasingly high resolution remote sensing images have abundant spatial details but limited spectral information, the use of conventional backbone networks would give rise to blurry boundaries between different semantics among hierarchical features. This explains why most false alarms in the final predictions distribute around change boundaries. To alleviate the problem, we pay attention to feature refinement and propose deep learning networks that deliver improved separability (ISNet). Our ISNet reaps the advantages from two strategies applied to refining bi-temporal feature hierarchies: (i) margin maximization that clarifies the gap between changed and unchanged semantics, and (ii) targeted arrangement of attention mechanisms that directs the use of channel attention and spatial attention for highlighting semantic and positional information, respectively. Specifically, we insert channel attention modules into share-weighted backbone networks to facilitate semantic-specific feature extraction. The semantic boundaries in the extracted bi-temporal hierarchical features are then clarified by margin maximization modules, followed by spatial attention modules to enhance positional change responses. A top-down fusion pathway makes the final refined features cover multi-scale representations and have strong separability for remote sensing image change detection. Extensive experimental evaluations demonstrate that our ISNet achieves state-of-the-art performance on the LEVIR-CD, SYSU-CD, and Season-Varying datasets, in terms of Overall Accuracy (OA), Intersection-of-Union (IoU), and F1 score. Code is available at https://github.com/xingronaldo/ISNet.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
MR完成签到,获得积分20
13秒前
桐桐应助MR采纳,获得10
23秒前
28秒前
ZaZa完成签到,获得积分10
33秒前
33秒前
张家宁发布了新的文献求助10
39秒前
着急的冬瓜完成签到 ,获得积分10
43秒前
1分钟前
可爱的函函应助小小K采纳,获得10
1分钟前
科研通AI6应助科研通管家采纳,获得10
1分钟前
科研通AI6应助科研通管家采纳,获得10
1分钟前
科研通AI6应助科研通管家采纳,获得10
1分钟前
Suu发布了新的文献求助10
1分钟前
bkagyin应助烟消云散采纳,获得10
1分钟前
1分钟前
兔子完成签到,获得积分10
1分钟前
小小K发布了新的文献求助10
1分钟前
田様应助不可靠的黏菌采纳,获得10
1分钟前
打打应助zilhua采纳,获得10
1分钟前
CipherSage应助肥猪采纳,获得10
1分钟前
1分钟前
徐矜发布了新的文献求助10
1分钟前
1分钟前
1分钟前
肥猪发布了新的文献求助10
1分钟前
烟消云散发布了新的文献求助10
1分钟前
Jiayouya完成签到,获得积分10
1分钟前
NexusExplorer应助石榴汁的书采纳,获得10
2分钟前
量子星尘发布了新的文献求助10
2分钟前
肥猪完成签到,获得积分10
2分钟前
赘婿应助Zhao0112采纳,获得10
2分钟前
2分钟前
2分钟前
2分钟前
陈毅发布了新的文献求助10
2分钟前
吴端完成签到,获得积分10
2分钟前
2分钟前
2分钟前
2分钟前
PP发布了新的文献求助10
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
Cummings Otolaryngology Head and Neck Surgery 8th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5755264
求助须知:如何正确求助?哪些是违规求助? 5492899
关于积分的说明 15381023
捐赠科研通 4893471
什么是DOI,文献DOI怎么找? 2632093
邀请新用户注册赠送积分活动 1579947
关于科研通互助平台的介绍 1535765