ISNet: Towards Improving Separability for Remote Sensing Image Change Detection

计算机科学 判别式 边距(机器学习) 特征(语言学) 变更检测 语义学(计算机科学) 最大化 特征提取 人工智能 模式识别(心理学) 特征学习 频道(广播) 交叉口(航空) 遥感 机器学习 程序设计语言 工程类 微观经济学 经济 航空航天工程 哲学 地质学 语言学 计算机网络
作者
Gong Cheng,Guangxing Wang,Junwei Han
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:60: 1-11 被引量:66
标识
DOI:10.1109/tgrs.2022.3174276
摘要

Deep learning has substantially pushed forward remote sensing image change detection through extracting discriminative hierarchical features. However, as the increasingly high resolution remote sensing images have abundant spatial details but limited spectral information, the use of conventional backbone networks would give rise to blurry boundaries between different semantics among hierarchical features. This explains why most false alarms in the final predictions distribute around change boundaries. To alleviate the problem, we pay attention to feature refinement and propose deep learning networks that deliver improved separability (ISNet). Our ISNet reaps the advantages from two strategies applied to refining bi-temporal feature hierarchies: (i) margin maximization that clarifies the gap between changed and unchanged semantics, and (ii) targeted arrangement of attention mechanisms that directs the use of channel attention and spatial attention for highlighting semantic and positional information, respectively. Specifically, we insert channel attention modules into share-weighted backbone networks to facilitate semantic-specific feature extraction. The semantic boundaries in the extracted bi-temporal hierarchical features are then clarified by margin maximization modules, followed by spatial attention modules to enhance positional change responses. A top-down fusion pathway makes the final refined features cover multi-scale representations and have strong separability for remote sensing image change detection. Extensive experimental evaluations demonstrate that our ISNet achieves state-of-the-art performance on the LEVIR-CD, SYSU-CD, and Season-Varying datasets, in terms of Overall Accuracy (OA), Intersection-of-Union (IoU), and F1 score. Code is available at https://github.com/xingronaldo/ISNet.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
苏沐521发布了新的文献求助10
2秒前
pluto应助小小怪采纳,获得10
2秒前
2秒前
uu发布了新的文献求助10
2秒前
XLin发布了新的文献求助10
3秒前
pluto应助锅包肉爱吃肉采纳,获得10
3秒前
4秒前
Yvette2024发布了新的文献求助10
4秒前
ChinaNiu发布了新的文献求助10
4秒前
4秒前
雪白的紫翠应助phl采纳,获得10
4秒前
5秒前
5秒前
roger发布了新的文献求助10
6秒前
情怀应助叫秋田犬的猫采纳,获得10
6秒前
眼睛大雨筠应助1Q84采纳,获得30
7秒前
脑洞疼应助侯聪雅采纳,获得10
8秒前
打打应助土豪的雪巧采纳,获得10
8秒前
谥輄发布了新的文献求助10
9秒前
英姑应助泽灵采纳,获得10
10秒前
柳七完成签到,获得积分10
10秒前
10秒前
Ava应助asdfqwer采纳,获得10
10秒前
11秒前
sfafasfsdf发布了新的文献求助10
11秒前
13秒前
Allen发布了新的文献求助10
13秒前
wanci应助ChinaNiu采纳,获得10
14秒前
wjx关闭了wjx文献求助
16秒前
16秒前
xxxyt完成签到,获得积分20
17秒前
17秒前
糊糊发布了新的文献求助10
17秒前
19秒前
董昌铭发布了新的文献求助10
19秒前
甜味白开水完成签到,获得积分10
19秒前
19秒前
19秒前
认真飞瑶发布了新的文献求助10
20秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3959051
求助须知:如何正确求助?哪些是违规求助? 3505388
关于积分的说明 11123550
捐赠科研通 3237039
什么是DOI,文献DOI怎么找? 1788976
邀请新用户注册赠送积分活动 871477
科研通“疑难数据库(出版商)”最低求助积分说明 802806