Diversity Vs Relevance: A Practical Multi-objective Study in Luxury Fashion Recommendations

推荐系统 相关性(法律) 计算机科学 多元化(营销策略) 偶然性 协同过滤 多样性(政治) 排名(信息检索) 情报检索 精确性和召回率 召回 万维网 营销 业务 心理学 社会学 哲学 认识论 政治学 人类学 法学 认知心理学
作者
João Sá,Vanessa Queiroz Marinho,Ana Rita Magalhães,Tiago Lacerda,Diogo Gonçalves
标识
DOI:10.1145/3477495.3531866
摘要

Personalized algorithms focusing uniquely on accuracy might provide highly relevant recommendations, but the recommended items could be too similar to current users' preferences. Therefore, recommenders might prevent users from exploring new products and brands (filter bubbles). This is especially critical for luxury fashion recommendations because luxury shoppers expect to discover exclusive and rare items. Thus, recommender systems for fashion need to consider diversity and elevate the shopping experience by recommending new brands and products from the catalog. In this work, we explored a handful of diversification strategies to rerank the output of a relevance-focused recommender system. Subsequently, we conducted a multi-objective offline experiment optimizing for relevance and diversity simultaneously. We measured diversity with commonly used metrics such as coverage, serendipity, and neighborhood distance, whereas, for relevance, we selected ranking metrics such as recall. The best diversification strategy offline improved user engagement by 2% in click-through rate and presented an uplift of 46% in distinct brands recommended when AB tested against real users. These results reinforced the importance of considering accuracy and diversity metrics when developing a recommender system.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
传奇3应助淡淡的小蜜蜂采纳,获得10
2秒前
2秒前
科研通AI2S应助专注的月亮采纳,获得10
3秒前
4秒前
是否完成签到,获得积分10
5秒前
悦耳凡柔完成签到,获得积分20
10秒前
10秒前
无限的猕猴桃完成签到,获得积分10
13秒前
ding应助尛瞐慶成采纳,获得10
14秒前
junze完成签到,获得积分10
15秒前
16秒前
17秒前
21秒前
Bo完成签到,获得积分20
22秒前
bjyx完成签到,获得积分10
23秒前
yyang发布了新的文献求助10
23秒前
24秒前
Bo发布了新的文献求助10
26秒前
28秒前
pptt完成签到,获得积分10
28秒前
yudandan@CJLU发布了新的文献求助10
30秒前
CipherSage应助美好斓采纳,获得10
30秒前
科研通AI2S应助yiryir采纳,获得10
31秒前
32秒前
Ava应助科研通管家采纳,获得10
32秒前
festum应助科研通管家采纳,获得10
33秒前
WUWUWU应助科研通管家采纳,获得10
33秒前
星辰大海应助王梓磬采纳,获得10
33秒前
爆米花应助科研通管家采纳,获得10
33秒前
双黄应助科研通管家采纳,获得10
33秒前
隐形曼青应助科研通管家采纳,获得10
33秒前
mmyhn应助科研通管家采纳,获得20
33秒前
英姑应助科研通管家采纳,获得10
33秒前
斯文败类应助科研通管家采纳,获得10
33秒前
qingyou发布了新的文献求助10
33秒前
34秒前
37秒前
SciGPT应助孤独靖柏采纳,获得10
37秒前
38秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 1800
Natural History of Mantodea 螳螂的自然史 1000
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
How Maoism Was Made: Reconstructing China, 1949-1965 800
Barge Mooring (Oilfield Seamanship Series Volume 6) 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3314113
求助须知:如何正确求助?哪些是违规求助? 2946546
关于积分的说明 8530432
捐赠科研通 2622170
什么是DOI,文献DOI怎么找? 1434347
科研通“疑难数据库(出版商)”最低求助积分说明 665268
邀请新用户注册赠送积分活动 650832