Electronic structure adjustment of lithium sulfide by a single-atom copper catalyst toward high-rate lithium-sulfur batteries

催化作用 材料科学 成核 硫黄 过渡金属 吸附 硫化铜 离解(化学) 化学工程 硫化物 金属 物理化学 化学 冶金 有机化学 工程类
作者
Ru Xiao,Tong Yu,Shan Yang,Ke Chen,Zhuangnan Li,Zhibo Liu,Tianzhao Hu,Guangjian Hu,Jiong Li,Hui‐Ming Cheng,Zhenhua Sun,Feng Li
出处
期刊:Energy Storage Materials [Elsevier BV]
卷期号:51: 890-899 被引量:88
标识
DOI:10.1016/j.ensm.2022.07.024
摘要

Electrocatalytically reducing the energy barrier for Li2S deposition/dissociation is a promising strategy for high-rate Li-S batteries. However, the catalytic sites would be covered by the insulating Li2S product during discharge, which deteriorates the catalytic activity. Here, suggested by first-principles calculations, single-atom copper (SA-Cu) was screened out to endow the insulator-to-metal transition of adsorbed Li2S in view of the electronic structure. In addition to the thermodynamically reduced redox energy barrier, metallic Li2S nuclei deposited on SA-Cu decorated nitrogen-doped carbon fiber foam ([email protected]) with favorable electronic transport present 3D spherical clusters rather than conventional 2D lateral morphology by continuous 3D nucleation and growth. The Li2S deposition capacity and the catalytic efficiency of Li2S-covered catalytic sites are thus greatly improved. As a result, [email protected] based Li-S cells with a sulfur loading of 4 mg cm−2 retained an areal capacity of 1.60 mAh cm−2 at 5 C after 500 cycles (0.038% decay per cycle). A competitive areal capacity of 8.44 mAh cm−2 was obtained at 0.2 C with a sulfur loading of 10 mg cm−2. The demonstration of the distinctive design of catalysts to adjust the electronic structure of adsorbed Li2S paves the way for developing high-rate and long-life Li-S batteries.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
慕青应助福缘采纳,获得10
4秒前
5秒前
8秒前
xt_489完成签到,获得积分10
9秒前
JamesPei应助聪明的白筠采纳,获得10
10秒前
今后应助水中鱼采纳,获得10
10秒前
书虫发布了新的文献求助10
13秒前
14秒前
郭阳发布了新的文献求助10
14秒前
14秒前
17秒前
18秒前
醉熏的鑫完成签到,获得积分10
18秒前
李蕤蕤完成签到,获得积分10
19秒前
小唐尼发布了新的文献求助30
19秒前
20秒前
21秒前
Huang_being发布了新的文献求助10
22秒前
shawn发布了新的文献求助10
22秒前
22秒前
FashionBoy应助dara采纳,获得10
23秒前
着急的大米完成签到,获得积分20
24秒前
orixero应助hello采纳,获得10
24秒前
星辰大海应助顺利煎蛋采纳,获得10
25秒前
25秒前
27秒前
量子星尘发布了新的文献求助10
28秒前
28秒前
GGBOND发布了新的文献求助10
28秒前
29秒前
wu发布了新的文献求助10
29秒前
纳米酶催化完成签到,获得积分10
30秒前
pppp发布了新的文献求助10
31秒前
桐桐应助林宝雯采纳,获得10
31秒前
程程发布了新的文献求助10
33秒前
完美世界应助着急的大米采纳,获得10
33秒前
33秒前
33秒前
bkagyin应助冰琪采纳,获得10
33秒前
万能图书馆应助anna采纳,获得10
35秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3989115
求助须知:如何正确求助?哪些是违规求助? 3531367
关于积分的说明 11253688
捐赠科研通 3269986
什么是DOI,文献DOI怎么找? 1804868
邀请新用户注册赠送积分活动 882078
科研通“疑难数据库(出版商)”最低求助积分说明 809105