期刊:IEEE Transactions on Affective Computing [Institute of Electrical and Electronics Engineers] 日期:2022-06-10卷期号:14 (4): 2751-2767被引量:14
标识
DOI:10.1109/taffc.2022.3181736
摘要
Facial expression recognition (FER) is of great interest to the current studies of human-computer interaction. In this paper, we propose a novel geometry-guided facial expression recognition framework, based on graph convolutional networks and transformers, to perform effective emotion recognition from videos. Specifically, we detect and utilize facial landmarks to construct a spatial-temporal graph, based on both the landmark coordinates and local appearance, for representing a facial expression sequence. The graph convolutional blocks and transformer modules are employed to produce high-semantic emotion-related representations from the structured facial graphs, which facilitate the framework to establish both the local and non-local dependency between the vertices. Moreover, spatial and temporal attention mechanisms are introduced into graph-based learning to promote FER reasoning, via the emphasis on the most informative facial components and frames. Extensive experiments demonstrate that the proposed framework achieves promising performance for geometry-based FER and shows great generalization and robustness in real-world applications.