Learning discriminative and representative feature with cascade GAN for generalized zero-shot learning

判别式 计算机科学 零(语言学) 特征(语言学) 人工智能 模式识别(心理学) 级联 弹丸 数学 材料科学 工程类 语言学 化学工程 哲学 冶金
作者
Jingren Liu,Liyong Fu,Haofeng Zhang,Qiaolin Ye,Wankou Yang,Li Liu
出处
期刊:Knowledge Based Systems [Elsevier]
卷期号:236: 107780-107780 被引量:16
标识
DOI:10.1016/j.knosys.2021.107780
摘要

Zero-Shot Learning (ZSL) aims to employ seen images and their related semantics to identify unseen images through knowledge transfer. Among past numerous methods, the generative methods are more prominent and achieve better results than other methods. However, we find the input for generating samples is too monotonous, there are only semantics of each class and artificially defined noise, which makes the generated visual features non-discriminative and the classifier cannot effectively distinguish them. In order to solve this problem, we propose a novel approach with cascade Generative Adversarial Network (GAN) to generate discriminative and representative features. In this method, we define a latent space where the features from different categories are orthogonal to each other and the generator for this latent space is learned with a Wasserstein GAN. In addition, in order to make up for the deficiency that the features in this latent space cannot accurately simulate the true distribution of species, we utilize another Wasserstein GAN or Cramér GAN cascaded with the previous one to generate more discriminative and representative visual features. In this way, we can not only expand the content used as input in the generation process, but also make the final generated visual features clear and separable under the influence of latent spatial orthogonality. Extensive experiments on five benchmark datasets, i.e. , AWA1, AWA2, CUB, SUN and APY, demonstrate that our proposed method can outperform most of the state-of-the-art methods on both conventional and generalized zero-shot learning settings. • Generating more representative latent and visual features to alleviate domain shift. • Features of different categories are more discriminative through orthogonal projection. • It can outperform the SOTA methods on five popular datasets.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
gjx完成签到 ,获得积分10
刚刚
Yanki完成签到,获得积分10
4秒前
小石榴的爸爸完成签到 ,获得积分10
4秒前
JACK发布了新的文献求助10
4秒前
乐观寻雪完成签到,获得积分10
4秒前
红箭烟雨完成签到,获得积分10
8秒前
小石榴爸爸完成签到 ,获得积分10
8秒前
香蕉觅云应助St雪采纳,获得10
9秒前
劲爆巧克力完成签到,获得积分10
10秒前
欧欧欧导完成签到,获得积分10
11秒前
dunhuang完成签到,获得积分10
11秒前
xzx完成签到 ,获得积分10
12秒前
篮孩子完成签到,获得积分10
13秒前
嘿哈完成签到,获得积分10
13秒前
luoziwuhui完成签到,获得积分10
13秒前
毛毛完成签到,获得积分10
13秒前
小白完成签到,获得积分10
13秒前
pinkpaopaochahu完成签到 ,获得积分10
16秒前
狼牧羊城完成签到,获得积分10
17秒前
直率萌完成签到,获得积分10
17秒前
MLH完成签到,获得积分20
17秒前
七岁完成签到,获得积分10
17秒前
科研通AI2S应助tg2024采纳,获得10
17秒前
科目三应助传说中的小鸣采纳,获得10
18秒前
长孙归尘完成签到 ,获得积分10
20秒前
松鼠15111完成签到,获得积分10
20秒前
逍遥自在完成签到,获得积分10
20秒前
诗恋菲宇完成签到,获得积分10
20秒前
13完成签到 ,获得积分10
20秒前
青海盐湖所李阳阳完成签到 ,获得积分10
22秒前
水瓶鱼完成签到,获得积分0
24秒前
25秒前
奶油蜜豆卷完成签到,获得积分10
26秒前
Cu完成签到,获得积分10
28秒前
淳于越泽应助曾珍采纳,获得50
29秒前
ZoeyD完成签到 ,获得积分10
31秒前
ymxlcfc完成签到 ,获得积分10
31秒前
笨笨的兰完成签到,获得积分10
32秒前
CXSCXD完成签到,获得积分10
32秒前
小杨完成签到,获得积分10
33秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 800
Conference Record, IAS Annual Meeting 1977 610
Interest Rate Modeling. Volume 3: Products and Risk Management 600
Interest Rate Modeling. Volume 2: Term Structure Models 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3555910
求助须知:如何正确求助?哪些是违规求助? 3131507
关于积分的说明 9391334
捐赠科研通 2831220
什么是DOI,文献DOI怎么找? 1556405
邀请新用户注册赠送积分活动 726554
科研通“疑难数据库(出版商)”最低求助积分说明 715890