聚类分析
约束(计算机辅助设计)
欧几里德距离
计算机科学
相关聚类
CURE数据聚类算法
树冠聚类算法
算法
数据流聚类
分拆(数论)
样品(材料)
约束聚类
模式识别(心理学)
数据挖掘
数学
人工智能
色谱法
组合数学
化学
几何学
作者
JunQiao Jiang,Yuan Cheng,Ao Li
标识
DOI:10.1109/mass52906.2021.00029
摘要
The spatial-temporal clustering by fast search and find of density peaks (ST-CFSFDP) has a better clustering effect on the spatiotemporal data set in a small space. However, there are some deficiencies in the spatiotemporal dataset with large data volume and far interval between sample points, the clustering results showed great differences, too many interference points during visualization. Given the above deficiencies, this paper proposes a spatial-temporal clustering by fast search and find of density peak algorithm based on Euclidean distance constraint, by increasing the partition constraint of some sample points, the problems existing in the spatiotemporal clustering algorithm of ST-CFSFDP are improved. Experimental results show that the improved algorithm has a better clustering effect than the original algorithm.
科研通智能强力驱动
Strongly Powered by AbleSci AI