The application of “deep learning” in construction site management: scientometric, thematic and critical analysis

桥(图论) 计算机科学 深度学习 独创性 主题分析 数据科学 知识管理 互联网 人工智能 工程管理 工程类 万维网 定性研究 医学 内科学 社会学 社会科学
作者
Faris Elghaish,Sandra T. Matarneh,Mohammad Alhusban
出处
期刊:Construction Innovation: Information, Process, Management [Emerald (MCB UP)]
卷期号:22 (3): 580-603 被引量:9
标识
DOI:10.1108/ci-10-2021-0195
摘要

Purpose The digital construction transformation requires using emerging digital technology such as deep learning to automate implementing tasks. Therefore, this paper aims to evaluate the current state of using deep learning in the construction management tasks to enable researchers to determine the capabilities of current solutions, as well as finding research gaps to carry out more research to bridge revealed knowledge and practice gaps. Design/methodology/approach The scientometric analysis is conducted for 181 articles to assess the density of publications in different topics of deep learning-based construction management applications. After that, a thematic and gap analysis are conducted to analyze contributions and limitations of key published articles in each area of application. Findings The scientometric analysis indicates that there are four main applications of deep learning in construction management, namely, automating progress monitoring, automating safety warning for workers, managing construction equipment, integrating Internet of things with deep learning to automatically collect data from the site. The thematic and gap analysis refers to many successful cases of using deep learning in automating site management tasks; however, more validations are recommended to test developed solutions, as well as additional research is required to consider practitioners and workers perspectives to implement existing applications in their daily tasks. Practical implications This paper enables researchers to directly find the research gaps in the existing solutions and develop more workable applications to bridge revealed gaps. Accordingly, this will be reflected on speeding the digital construction transformation, which is a strategy over the world. Originality/value To the best of the authors’ knowledge, this paper is the first of its kind to adopt a structured technique to assess deep learning-based construction site management applications to enable researcher/practitioners to either adopting these applications in their projects or conducting further research to extend existing solutions and bridging revealed knowledge gaps.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
平淡南松完成签到,获得积分10
刚刚
tree完成签到,获得积分10
刚刚
yoyo20012623完成签到,获得积分10
1秒前
maz123456完成签到,获得积分10
1秒前
杨榆藤完成签到,获得积分10
2秒前
wings关注了科研通微信公众号
3秒前
3秒前
3秒前
行远完成签到,获得积分10
4秒前
yue完成签到,获得积分10
4秒前
长孙归尘完成签到 ,获得积分10
5秒前
老迟到的小松鼠完成签到,获得积分10
6秒前
DAJI完成签到,获得积分10
6秒前
7秒前
HJZ完成签到,获得积分10
7秒前
淡淡从安完成签到 ,获得积分10
8秒前
歪歪象完成签到,获得积分10
8秒前
学呀学完成签到 ,获得积分10
9秒前
9秒前
9秒前
10秒前
10秒前
11秒前
zhu97完成签到 ,获得积分10
12秒前
要减肥香水完成签到,获得积分10
12秒前
suntee发布了新的文献求助10
12秒前
婷婷完成签到,获得积分10
13秒前
Szj发布了新的文献求助10
13秒前
MillionMiao完成签到,获得积分10
13秒前
守夜人发布了新的文献求助10
13秒前
沿途有你完成签到 ,获得积分10
14秒前
14秒前
思源应助友好如萱采纳,获得10
15秒前
鬼马baby完成签到,获得积分10
16秒前
自信安荷完成签到,获得积分10
17秒前
17秒前
17秒前
hbpu230701完成签到,获得积分10
17秒前
r93527005完成签到,获得积分10
18秒前
一叶舟完成签到,获得积分10
19秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Very-high-order BVD Schemes Using β-variable THINC Method 850
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3249002
求助须知:如何正确求助?哪些是违规求助? 2892380
关于积分的说明 8271185
捐赠科研通 2560658
什么是DOI,文献DOI怎么找? 1389175
科研通“疑难数据库(出版商)”最低求助积分说明 651006
邀请新用户注册赠送积分活动 627869