神经保护
神经炎症
失调
缺氧(环境)
一氧化氮
肠道菌群
一氧化氮合酶
免疫学
生物
炎症
医学
药理学
化学
内分泌学
有机化学
氧气
作者
Laura Bonfili,Chunmei Gong,Francesca Lombardi,Maria Grazia Cifone,Anna Maria Eleuteri
摘要
Dysbiosis contributes to Alzheimer's disease (AD) pathogenesis, and oral bacteriotherapy represents a promising preventative and therapeutic opportunity to remodel gut microbiota and to delay AD onset and progression by reducing neuroinflammation and amyloid and tau proteins aggregation. Specifically, SLAB51 multi-strain probiotic formulation positively influences multiple neuro-chemical pathways, but exact links between probiotics oral consumption and cerebral beneficial effects remain a gap of knowledge. Considering that cerebral blood oxygenation is particularly reduced in AD and that the decreased neurovascular function contributes to AD damages, hypoxia conditioning represents an encouraging strategy to cure diseases of the central nervous system. In this work, 8-week-old 3xTg-AD and wild-type mice were chronically supplemented with SLAB51 to evaluate effects on hypoxia-inducible factor-1α (HIF-1α), a key molecule regulating host-microbial crosstalk and a potential target in neurodegenerative pathologies. We report evidence that chronic supplementation with SLAB51 enhanced cerebral expression of HIF-1α and decreased levels of prolyl hydroxylase 2 (PHD2), an oxygen dependent regulator of HIF-1α degradation; moreover, it successfully counteracted the increase of inducible nitric oxide synthase (iNOS) brain expression and nitric oxide plasma levels in AD mice. Altogether, the results demonstrate an additional mechanism through which SLAB51 exerts neuroprotective and anti-inflammatory effects in this model of AD.
科研通智能强力驱动
Strongly Powered by AbleSci AI