Multi-Regression Analysis to Enhance the Predictability of the Seismic Response of Buildings

可预测性 标量(数学) 概率逻辑 结构工程 计算机科学 非线性系统 地震动 数学 计量经济学 统计 工程类 物理 几何学 量子力学
作者
Yeudy Felipe Vargas Alzate,Ramón González‐Drigo,Jorge Arturo Avila-Haro
出处
期刊:Infrastructures [MDPI AG]
卷期号:7 (4): 51-51 被引量:4
标识
DOI:10.3390/infrastructures7040051
摘要

Several methodologies for assessing seismic risk extract information from the statistical relationship between the intensity of ground motions and the structural response. The first group is represented by intensity measures (IMs) whilst the latter by engineering demand parameters (EDPs). The higher the correlation between them, the lesser the uncertainty in estimating seismic damage in structures. In general, IMs are composed by either a single (scalar-based IMs) or a group of features of both the ground motion and the structure (vector-valued IMs); the latter category provides higher efficiency to explain EDPs when compared to the first one. This paper explores how to find new vector-valued IMs, which are highly correlated with EDPs, by means of multi-regression analysis. To do so, probabilistic nonlinear dynamic analyses have been performed by considering a seven-story reinforced concrete building as a testbed. At a first stage, 30 scalar-based IMs have been correlated with 4 EDPs (i.e., 120 groups of IM-EDP pairs have been studied). Afterwards, the structural responses have been classified as elastic, inelastic and a combination of both. It has been analyzed how efficiency behaves when making these classifications. Then, 435 vector-valued IMs have been created to enhance the predictability of the scalar EDPs (i.e., 1740 groups of IM-EDP pairs have been analyzed). Again, the most efficient IMs have been identified. Sufficiency, which is another statistical property desired in IMs, has also been examined. Results show that the efficiency and sufficiency to predict the structural response increase when considering vector-valued IMs. This sophistication has important consequences in terms of design or assessment of civil structures.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
干净初彤发布了新的文献求助10
2秒前
马华化完成签到,获得积分0
2秒前
2秒前
2秒前
momo完成签到,获得积分10
6秒前
玫瑰发布了新的文献求助10
7秒前
搜集达人应助花开富贵采纳,获得10
10秒前
充电宝应助意志所向采纳,获得10
12秒前
jailbreaker完成签到 ,获得积分10
14秒前
14秒前
情怀应助海边的卡夫卡采纳,获得10
19秒前
华仔应助活力科研人采纳,获得10
20秒前
20秒前
子车茗应助mankit采纳,获得20
20秒前
22秒前
浮生发布了新的文献求助100
23秒前
搜集达人应助米籽采纳,获得10
25秒前
26秒前
28秒前
29秒前
JamesPei应助关我屁事采纳,获得10
30秒前
子脏完成签到,获得积分10
30秒前
黒面包发布了新的文献求助10
32秒前
ychao应助Prism_hua采纳,获得10
32秒前
水三寿发布了新的文献求助10
33秒前
33秒前
34秒前
35秒前
36秒前
mori完成签到,获得积分10
36秒前
ddd133完成签到,获得积分20
38秒前
落后的天蓝完成签到,获得积分10
39秒前
39秒前
39秒前
40秒前
李爱国应助达古冰川采纳,获得10
41秒前
浮生发布了新的文献求助10
41秒前
飞飞发布了新的文献求助10
41秒前
lxaz完成签到,获得积分10
42秒前
42秒前
高分求助中
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2500
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Theory of Block Polymer Self-Assembly 750
지식생태학: 생태학, 죽은 지식을 깨우다 700
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3484036
求助须知:如何正确求助?哪些是违规求助? 3073149
关于积分的说明 9129737
捐赠科研通 2764836
什么是DOI,文献DOI怎么找? 1517444
邀请新用户注册赠送积分活动 702119
科研通“疑难数据库(出版商)”最低求助积分说明 701009