亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Optimization design and performance study of a subsoiler underlying the tea garden subsoiling mechanism based on bionics and EDEM

仿生学 点云 离散元法 数学 生物系统 计算机科学 岩土工程 工程类 人工智能 机械工程 机械 农学 生物 物理
作者
Lei Zhang,Yibin Zhai,Jianneng Chen,Zhien Zhang,Shouzhi Huang
出处
期刊:Soil & Tillage Research [Elsevier]
卷期号:220: 105375-105375 被引量:66
标识
DOI:10.1016/j.still.2022.105375
摘要

Considering the problems of high tillage resistance, high energy consumption, and failure to break the plow pan in subsoiling caused by the high viscosity of tea garden soil, a new design method of a subsoiler underlying the subsoiling mechanism based on structural bionics and the discrete element method is proposed. Taking the largest toe of mole cricket's forefoot as the bionic object, the biological information of the contour of mole cricket's toe was extracted using the methods of image processing and reverse engineering, and the edges of its outer and inner contours were obtained. Combined with the structure of an existing subsoiler, initial point cloud data of a bionic subsoiling shovel were mapped by the methods of proportional amplification and rotation. Taking the minimum sum of outer and inner contour fitting errors as the optimal objective function and selecting high-order polynomial as the fitting function, the optimization model of the outer and inner contour point cloud fitting function was established. The optimal fitting function of the outer and inner contour point cloud was obtained, and the bionic subsoiler model was established based on these two optimal functions. In the study of the discrete element, four soil particle models were proposed based on the actual shape of the cohesive soil of a tea garden. Based on the principle of discrete elements and the agronomic requirements, a modeling method of the plow pan soil was proposed. First, the adjacent soil particles at the bottom were connected by bonding, and the soil with large porosity was squeezed by the preset force to form the plow pan soil. Then, six tillage layers were added above the plow to form a soil structure model of the tea garden. The bionic subsoiler was assembled into a four-bar subsoiling mechanism. The process of the subsoiling mechanism acting on the soil was analyzed by the co-simulation of ADAMS-EDEM and compared with the common subsoiler. The results showed that the bionic subsoiler, compared with the common subsoiler, reduced the tillage force in the horizontal direction by 16.34% and in the vertical direction by 24.53%, reduced energy consumption by 9.64%, increased the damage to the plow pan by 5.10%, and caused greater disturbance to the internal soil. The influence of different driving speeds on the tillage performance was studied, which provides a theoretical reference for the better selection of the working speed for subsoiling.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
6秒前
14秒前
25秒前
28秒前
文章多多发布了新的文献求助10
30秒前
科研通AI6应助曦耀采纳,获得10
34秒前
曦耀发布了新的文献求助10
41秒前
童严柯完成签到,获得积分10
44秒前
无极微光应助童严柯采纳,获得20
47秒前
Criminology34应助oleskarabach采纳,获得10
47秒前
Criminology34应助oleskarabach采纳,获得10
48秒前
Criminology34应助oleskarabach采纳,获得10
48秒前
58秒前
清脆语海发布了新的文献求助10
1分钟前
Hello应助清脆语海采纳,获得10
1分钟前
1分钟前
1分钟前
samchen完成签到,获得积分10
1分钟前
Jason发布了新的文献求助10
1分钟前
tomtion发布了新的文献求助10
1分钟前
ww完成签到,获得积分10
1分钟前
1分钟前
1分钟前
2分钟前
文章多多完成签到,获得积分10
2分钟前
Jason完成签到,获得积分10
2分钟前
Una完成签到,获得积分10
2分钟前
orixero应助科研通管家采纳,获得10
2分钟前
共享精神应助科研通管家采纳,获得10
2分钟前
2分钟前
香菜张完成签到,获得积分10
2分钟前
席江海完成签到 ,获得积分10
2分钟前
2分钟前
曦耀发布了新的文献求助10
3分钟前
3分钟前
zhjl发布了新的文献求助10
3分钟前
wangfaqing942完成签到 ,获得积分10
3分钟前
3分钟前
c138zyx发布了新的文献求助10
3分钟前
4分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
Psychology of Self-Regulation 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5639719
求助须知:如何正确求助?哪些是违规求助? 4749971
关于积分的说明 15007221
捐赠科研通 4797866
什么是DOI,文献DOI怎么找? 2563996
邀请新用户注册赠送积分活动 1522864
关于科研通互助平台的介绍 1482529