The Viability of an Artificial Intelligence/Machine Learning Prediction Model to Determine Candidates for Knee Arthroplasty

医学 关节置换术 人工智能 机器学习 外科 计算机科学
作者
David J. Houserman,Keith R. Berend,Adolph V. Lombardi,Chanel Fischetti,Erik Duhaime,Anant Jain,David A. Crawford
出处
期刊:Journal of Arthroplasty [Elsevier]
卷期号:38 (10): 2075-2080 被引量:23
标识
DOI:10.1016/j.arth.2022.04.003
摘要

The purpose of this study is to assess the viability of a knee arthroplasty prediction model using 3-view X-rays that helps determine if patients with knee pain are candidates for total knee arthroplasty (TKA), unicompartmental knee arthroplasty (UKA), or are not arthroplasty candidates.Analysis was performed using radiographic and surgical data from a high-volume joint replacement practice. The dataset included 3 different X-ray views (anterior-posterior, lateral, and sunrise) for 2,767 patients along with information of whether that patient underwent an arthroplasty surgery (UKA or TKA) or not. This resulted in a dataset including 8,301 images from 2,707 patients. This dataset was then split into a training set (70%) and holdout test set (30%). A computer vision model was trained using a transfer learning approach. The performance of the computer vision model was evaluated on the holdout test set. Accuracy and multiclass receiver operating characteristic area under curve was used to evaluate the performance of the model.The artificial intelligence model achieved an accuracy of 87.8% on the holdout test set and a quadratic Cohen's kappa score of 0.811. The multiclass receiver operating characteristic area under curve score for TKA was calculated to be 0.97; for UKA a score of 0.96 and for No Surgery a score of 0.98 was achieved. An accuracy of 93.8% was achieved for predicting Surgery versus No Surgery and 88% for TKA versus not TKA was achieved.The artificial intelligence/machine learning model demonstrated viability for predicting which patients are candidates for a UKA, TKA, or no surgical intervention.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
Owen应助Kuroha528采纳,获得10
2秒前
3秒前
方易烟发布了新的文献求助10
3秒前
默默易梦发布了新的文献求助10
3秒前
zhangrun发布了新的文献求助10
3秒前
一大罐发布了新的文献求助10
3秒前
驴小兔子发布了新的文献求助10
4秒前
开心之王完成签到,获得积分10
4秒前
朱洛尘发布了新的文献求助10
4秒前
yanan完成签到,获得积分10
6秒前
7秒前
Jasper应助DDD采纳,获得10
9秒前
9秒前
shuangcheng发布了新的文献求助10
10秒前
娇气的稚晴关注了科研通微信公众号
10秒前
10秒前
12秒前
独特斩完成签到 ,获得积分10
13秒前
深情安青应助科研通管家采纳,获得10
13秒前
yyg应助科研通管家采纳,获得10
13秒前
科目三应助科研通管家采纳,获得10
13秒前
科研通AI2S应助科研通管家采纳,获得50
13秒前
今后应助科研通管家采纳,获得10
13秒前
yyg应助科研通管家采纳,获得10
14秒前
科研通AI5应助科研通管家采纳,获得50
14秒前
所所应助辛勤的可仁采纳,获得10
14秒前
小二郎应助科研通管家采纳,获得10
14秒前
14秒前
jj158发布了新的文献求助10
14秒前
17秒前
星辰大海应助童念之采纳,获得10
17秒前
17秒前
17秒前
鳗鱼三毒发布了新的文献求助10
19秒前
19秒前
xx完成签到,获得积分10
19秒前
19秒前
hxl123发布了新的文献求助10
20秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 1000
Conference Record, IAS Annual Meeting 1977 610
電気学会論文誌D(産業応用部門誌), 141 巻, 11 号 510
Time Matters: On Theory and Method 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3559737
求助须知:如何正确求助?哪些是违规求助? 3134233
关于积分的说明 9406103
捐赠科研通 2834272
什么是DOI,文献DOI怎么找? 1557967
邀请新用户注册赠送积分活动 727812
科研通“疑难数据库(出版商)”最低求助积分说明 716507